Всё же иррациональность чётных и нечётных чисел доказывается по-разному, чётный случай сводится к иррациональности числа 2 . А то прозвучало так: числа 5, 6, 7 и так далее до 17. Для числа 6, например, слева будет квадрат ЧЁТНОГО числа, это другой рисунок, чем, например, для числа 5.
В районе 16:00 небольшая техническая ошибка. Число b не может также быть чётным, потому что если бы оно было чётным, то мера не была бы наибольшей, потому что и a, и b можно было бы измерить УДВОЕННОЙ мерой (а в ролике - ПОЛОВИНОЙ этой меры). А в общем - совершенно замечательно.
14:50 Вы запутались в суждениях. Представим, что сторона голубого квадрата 5, а розового - 3 (исходя из геометрического видения). Меняем в вашем примере рисунки на числа. Получаем 2*6= 10*2+2. Вы видите равенство в этом примере? Я не вижу. Значит нельзя сравнивать 2 абстрактные площади подобным образом. Голубой прямоугольник в 3 раза больше по площади розового, а не в 5. Вывод. Вы берёте 2 груши и приравниваете их к 10 яблокам и ещё накидываете 10 грамм. Что вы надеетесь получить в итоге? Какой ответ вы хотите: в яблоках, грушах или граммах? Сперва нужно привести к единству единицы измерения каждого слагаемого. А теперь разберём именно с математической стороны, а не абстрактной. В любом квадрате с нечётной стороной можно вывести формулу S=(a*b)*4+1 (a и b - стороны прямоугольников, из которых строится квадрат, и которые всегда различаются лишь на 1). Значит можно записать формулу - S=(a*(a+1))*4+1=4*a^2+4*a+1. Теперь, чтобы увеличить площадь на некое число, нужно n*S=n*(4*a^2+4*a+1)=4*n*a^2+4*n*a+n. n*a - это меньшая сторона прямоугольника в новом квадрате. Если ввести новую букву, то обнаружим - n*S=4*a*b+4*b+n. И это ещё при том, что изменился размер единицы измерения с 1 на n. А так как у нас единица измерения должна быть в неких квадратах, значит n должно быть всегда кратно 4, так как любой квадрат минимум можно разделить только на 4 равных квадрата. И ещё в придачу ко всему у нас остаётся a, которое пришло из прошлого квадрата. Как видим, эта математика совершенно не соответствует вашей математике.
Когда вы приравниваете стороны квадаратов к конкретным числам (3 и 5), вы решаете ту же задачу, но методом подстановки (т.е. методом проб и ошибок). Вероятность найти подходящее соотношение сторон квадаратов для заданного соотношения их площадей при этом крайне мала. Если бы данные числа (3 и 5, например) привели к верному равенству площадей, то вы опровергли бы то, что утверждается в теореме (т.е. опровергли бы несоизмеримость площадей при их данном соотношении), но вы не опровергли его, т.к. 25 не делится нацело на 9. Ваш пример не является контрпримером. Это очевидно.
@@nickwecksten808 Нельзя сравнивать и складывать разные единицы измерения. Голубой, розовый и единица - это разные единицы измерения. В ролике сравниваются поле, огород и 1. Сперва нужно поле и огород вывести в единицах и лишь потом проводить операции.
Смотрел и не покидало стойкое ощущение что где-то я это уже всё слышал. Пошёл рыться в журналах "Квант" и вуаля, номер 1 за 1986-й год, статья "Пифагор"😅 Идея та же: разность двух треугольных чисел, умноженная на 8, равна n - 1, где n - число, из которого извлекаем корень. Наименьшее n, для которого это не приводит к противоречию, равно 17 (9 и так квадрат). Дальше там говорится что док-во для всех n придумал Теэтет; может расскажете, что он там изобрёл?
Один из двух авторов этой статьи - это Изабелла Григорьевна Башмакова, известный историк математики, комментатор Диофанта и Ферма. То, что доказательство Феодора реконструировал Жан Итар, она знала (см. первый том "Истории математики с древнейших времён..."
Можно изначально договориться о какой-то условной единице (нарисовать отрезок и сказать, что его длина равна одному). Если он достаточно маленький, то никаких проблем не будет.
@@АнатолийПопов-э3о как минимум оно должно было быть очевидным читателям Платона, он использует слово "фут" в этом смысле без пояснени в "Теэтете" и "Меноне", возможно где-то ещё
Я - не математик ( типа гуманитарий, химик). Однако прошу разъяснить, как у пожилого математика сумма четного и нечётного чисел является чётным числом?
Электрон в атоме прыгнул и выделил фотон/волну. Другой электрон поймал этот фотон, в другом атоме, прыгнул и выдал вторичную волну. И так далее тепло распространяется... Без участия дебильного теплорода. Электрон не имеет электрического заряда он имеет только энергетический заряд, согласно Е=mc². Пора уже прекращать электрон и протон изображать точками с зарядами. У них нет никаких зарядов кроме энергетического Е= mc2. Когда же эта простая истина до академической науки дойдёт? Или академики мозги растеряли?
в компьютере float числа хранятся в системе “дюймовых ключей” 1/2, 1/4, 1/8, 1/16, 1/32 … и комбинация сумм этих дробей - 5/8, 7/16, 7/8 и тд. (мантиса) . никаких десятичный дробей в компьютере нет. f32 = +/-1 x 2^exp x (1 + mantissa). где exp это целое число [-126:127]
я ничего не понял. И вообще, а как узнать что площадь какого-либо квадрата в 2 или сколько то там раз больше или меньше другого? Разве есть такой математический прибор площадемер? или литромер для кубов. в математическом смысле разумеется. Вроде можно использовать только циркуль и линейку. а у меня и циркуля то нет кстати.
По аналогии с линейкой. У вас есть эталон длины. Прикладываете линейку к отрезку и смотрите сколько раз этот эталон помещается в отрезке. Для точных расчётов длина этого эталона должна быть достаточно маленькая. По этой же аналогии делаем маленький квадратик и пытаемся замостить какую-то фигуру такими маленькими квадратиками. Смотрим сколько их поместится внутри этой фигуры без наложений. То есть тут совершенно такая же аналогия. Другой вопрос, что это сложнее реализовать физически в виде какого-то прибора. Проще вычислить отдельно длину и ширину (если это прямоугольник) и перемножить их. Но уверен изначально площади пытались сравнивать именно через эталоны площади.
@@mrgoodpeople а если без наложений не получается? что, опять уменьшать квадратики? Вот длины отрезков легко соизмерить, и, кстати, не линейкой это делается, а циркулем. Так что не годится аналогия
@@papaschultz ну да, уменьшать. Для длин отрезков конечно просто, потому что это примитивнейший одномерный объект. Но и там нужно, чтобы эти "отрезки" не накладывались друг на друга. Просто это гораздо проще реализовать и это делается по сути единственным способом. Одномерность же =). Чуть сложнее ситуация, если это не прямая, а кривая линия. Тут уже либо линейка должна быть гибкой, либо опять-таки нужно уменьшать длину отрезков и после очередного прикладывания поворачивать линейку по касательной к этой кривой. А в случае площади конечно всё будет гораздо-гораздо сложнее. В принципе в качестве физического площадеизмерителя можно использовать жидкость. Как мы можем измерить объём тела погрузив его в воду, так можно сделать и для площади, но нужно саму фигуру сделать объемной "вытянув" в высоту. В этом случае при известной высоте достаточно будет измерить объём и поделить его на высоту. Вообщем чем больше измерений тем жизнь конечно сложнее.
@@papaschultz почему же не линейкой. Очень даже линейкой. А циркуль - это разве не линейка? Это способ отложить отрезок одинаковой длины во всех направлениях сразу. Эдакая круговая линейка, которая вращается вокруг фиксированной точки. А линейку в этом случае нужно будет вручную прикладывать в нужном направлении. Но я думаю с задачей соединить линейкой две точки любой человек вообщем-то справится.
@@mrgoodpeople нет, циркуль не линейка. и в математике эти 2 математических инструмента рассмотриваются как 2 разных. И да, линейка именно для соединения 2х и более точек. Для измерения она в математике НЕ используется. Ну вот так есть.
@@tufoed когда говорят пятифутовый квадрат имеется в виду, что его площадь равна пяти квадратным футам, а сторона соответственно корень из 5. Это просто речевой оборот. Не нужно тут придираться.
Математика стирает границы между прошлым и настоящим, и между странами тоже. Иногда смотришь англоязычные вузовские лекции по математике, и видишь те же определения, те же теоремы и доказательства, которым учился сам, и думаешь себе: да они же говорят на том же языке, что и мы!
Вроде древние греки очень верили гармонию и то что рациональыми числами то есть отношением двух целых можно выразить любое значение. Поэтому первого грека приведшего четкое доказательство иррациональность корня из двух греки просто убили. И только значительно позже они признали ирациональность некоторых чисел.
Число 17 знаменательно также тем, что Гаусс нашел возможность построения при помощи циркуля и линейки правильного семнадцатиугольника. Более того, затем он определил общий критерий нахождения чисел, соответствующих количеству сторон, при котором возможно построение правильного многоугольника при помощи циркуля и линейки.
Всё же иррациональность чётных и нечётных чисел доказывается по-разному, чётный случай сводится к иррациональности числа 2 . А то прозвучало так: числа 5, 6, 7 и так далее до 17. Для числа 6, например, слева будет квадрат ЧЁТНОГО числа, это другой рисунок, чем, например, для числа 5.
В районе 16:00 небольшая техническая ошибка. Число b не может также быть чётным, потому что если бы оно было чётным, то мера не была бы наибольшей, потому что и a, и b можно было бы измерить УДВОЕННОЙ мерой (а в ролике - ПОЛОВИНОЙ этой меры).
А в общем - совершенно замечательно.
Это на 09:52
Когда то к нам на матфак приходил чудак, который пытался доказать великую теорему Ферма рисуя похожие квадратики)
И что, доказал?
@@ИмяФамилия-э4ф7в нет, конечно
А он их в n-мерном пространстве рисовал?
А в каком кольце?
Я давно говорил, что матфаке тоже надо меньше пить. Ведь то был сам Феодор!
14:50 Вы запутались в суждениях. Представим, что сторона голубого квадрата 5, а розового - 3 (исходя из геометрического видения). Меняем в вашем примере рисунки на числа. Получаем 2*6= 10*2+2. Вы видите равенство в этом примере? Я не вижу. Значит нельзя сравнивать 2 абстрактные площади подобным образом. Голубой прямоугольник в 3 раза больше по площади розового, а не в 5.
Вывод. Вы берёте 2 груши и приравниваете их к 10 яблокам и ещё накидываете 10 грамм. Что вы надеетесь получить в итоге? Какой ответ вы хотите: в яблоках, грушах или граммах? Сперва нужно привести к единству единицы измерения каждого слагаемого.
А теперь разберём именно с математической стороны, а не абстрактной. В любом квадрате с нечётной стороной можно вывести формулу S=(a*b)*4+1 (a и b - стороны прямоугольников, из которых строится квадрат, и которые всегда различаются лишь на 1). Значит можно записать формулу - S=(a*(a+1))*4+1=4*a^2+4*a+1. Теперь, чтобы увеличить площадь на некое число, нужно n*S=n*(4*a^2+4*a+1)=4*n*a^2+4*n*a+n. n*a - это меньшая сторона прямоугольника в новом квадрате. Если ввести новую букву, то обнаружим - n*S=4*a*b+4*b+n. И это ещё при том, что изменился размер единицы измерения с 1 на n. А так как у нас единица измерения должна быть в неких квадратах, значит n должно быть всегда кратно 4, так как любой квадрат минимум можно разделить только на 4 равных квадрата. И ещё в придачу ко всему у нас остаётся a, которое пришло из прошлого квадрата. Как видим, эта математика совершенно не соответствует вашей математике.
Когда вы приравниваете стороны квадаратов к конкретным числам (3 и 5), вы решаете ту же задачу, но методом подстановки (т.е. методом проб и ошибок). Вероятность найти подходящее соотношение сторон квадаратов для заданного соотношения их площадей при этом крайне мала. Если бы данные числа (3 и 5, например) привели к верному равенству площадей, то вы опровергли бы то, что утверждается в теореме (т.е. опровергли бы несоизмеримость площадей при их данном соотношении), но вы не опровергли его, т.к. 25 не делится нацело на 9. Ваш пример не является контрпримером. Это очевидно.
@@nickwecksten808 Нельзя сравнивать и складывать разные единицы измерения. Голубой, розовый и единица - это разные единицы измерения. В ролике сравниваются поле, огород и 1. Сперва нужно поле и огород вывести в единицах и лишь потом проводить операции.
Конечно речь о замощении квадратов плитками 1х1, выложенных, возможно, по диагоналям исходного квадрата
Выздоравливайте пожалуйста, прям слышно как трудно говорить вам
Такое ощущение что уменя не хватает оперативной памяти что бы понять эти доказательства. До определенного момента понятно а потом нить теряется....
Смотрел и не покидало стойкое ощущение что где-то я это уже всё слышал. Пошёл рыться в журналах "Квант" и вуаля, номер 1 за 1986-й год, статья "Пифагор"😅 Идея та же: разность двух треугольных чисел, умноженная на 8, равна n - 1, где n - число, из которого извлекаем корень. Наименьшее n, для которого это не приводит к противоречию, равно 17 (9 и так квадрат). Дальше там говорится что док-во для всех n придумал Теэтет; может расскажете, что он там изобрёл?
Один из двух авторов этой статьи - это Изабелла Григорьевна Башмакова, известный историк математики, комментатор Диофанта и Ферма. То, что доказательство Феодора реконструировал Жан Итар, она знала (см. первый том "Истории математики с древнейших времён..."
Статья называлась Плоские числа, по моему.
@@AbakumovOleg Статья называлась "Пифагор", её совсем несложно загуглить.
10:58 Наверное, имелось ввиду не существует ц е л ы х чисел. Так-то любая пара отличная на корень из трёх.
объясните мне, пожалуйста, почему при сокращении с одной стороны уравнения исчезла 1 центральна единица, а с другой аж две? И во второй раз тоже...
Спасибо за видео!!! Класс!!! 👍👍👍
Сразу вопрос: так и какие же два квадрата относятся друг к другу как 17 к 1?
доказательство было о том что их нет. оно не получилось.
а ну и, типа, треугольное число бывает и чётным и нечётным.
У меня сразу вопрос: а как извините он рисовал квадраты площадью, например 5м2, со стороной sqrt(5) ??? (Метр, фут, сажень - здесь разницы нет)
Можно изначально договориться о какой-то условной единице (нарисовать отрезок и сказать, что его длина равна одному). Если он достаточно маленький, то никаких проблем не будет.
@@founderinho развейте мысль пожалуйста. Ну вот определили единицу. А как корень из 5 отобразить?
@@MaximMarkosov гипотенуза треугольника с катетами 1 и 2 :)
@@founderinho остроумно, а 7? 9? Не все ж подходит.
@@Aisor98 3:53
Забавные игры ума.
Спасибо !
Фут - древнегреческая единица площади? ;)
Фут это одномерная величина, длина. Смутило меня.
имеется в виду квадратный фут, это общепринятое в древнегреческой математике обозначение
@@stepesh Позвольте узнать, сколько столетий назад оно стало общепринятым в древнегреческой математике? ;)
@@АнатолийПопов-э3о не уверен что кто-либо за всю историю человечества может ответить на ваш вопрос
@@АнатолийПопов-э3о как минимум оно должно было быть очевидным читателям Платона, он использует слово "фут" в этом смысле без пояснени в "Теэтете" и "Меноне", возможно где-то ещё
Тем не менее, корень из 17 по-прежнему иррационален.
Я - не математик ( типа гуманитарий, химик). Однако прошу разъяснить, как у пожилого математика сумма четного и нечётного чисел является чётным числом?
Видимо, это оказался очевидно ложный вывод из неверного предположения
Где конкретно?
Электрон в атоме прыгнул и выделил фотон/волну.
Другой электрон поймал этот фотон, в другом атоме, прыгнул и выдал вторичную волну.
И так далее тепло распространяется... Без участия дебильного теплорода.
Электрон не имеет электрического заряда он имеет только энергетический заряд, согласно Е=mc².
Пора уже прекращать электрон и протон изображать точками с зарядами. У них нет никаких зарядов кроме энергетического
Е= mc2.
Когда же эта простая истина до академической науки дойдёт?
Или академики мозги растеряли?
Так почему 17 то не дал противоречия. Вы же не объяснили. Я так не могу.
футы используются в авиации, колесах, телефонах, телевизорах, дискетках. 12 дюймов - 1 фут.
305 мм
в компьютере float числа хранятся в системе “дюймовых ключей” 1/2, 1/4, 1/8, 1/16, 1/32 … и комбинация сумм этих дробей - 5/8, 7/16, 7/8 и тд. (мантиса) . никаких десятичный дробей в компьютере нет. f32 = +/-1 x 2^exp x (1 + mantissa). где exp это целое число [-126:127]
я ничего не понял. И вообще, а как узнать что площадь какого-либо квадрата в 2 или сколько то там раз больше или меньше другого? Разве есть такой математический прибор площадемер? или литромер для кубов. в математическом смысле разумеется. Вроде можно использовать только циркуль и линейку. а у меня и циркуля то нет кстати.
По аналогии с линейкой. У вас есть эталон длины. Прикладываете линейку к отрезку и смотрите сколько раз этот эталон помещается в отрезке. Для точных расчётов длина этого эталона должна быть достаточно маленькая. По этой же аналогии делаем маленький квадратик и пытаемся замостить какую-то фигуру такими маленькими квадратиками. Смотрим сколько их поместится внутри этой фигуры без наложений. То есть тут совершенно такая же аналогия. Другой вопрос, что это сложнее реализовать физически в виде какого-то прибора. Проще вычислить отдельно длину и ширину (если это прямоугольник) и перемножить их. Но уверен изначально площади пытались сравнивать именно через эталоны площади.
@@mrgoodpeople а если без наложений не получается? что, опять уменьшать квадратики? Вот длины отрезков легко соизмерить, и, кстати, не линейкой это делается, а циркулем.
Так что не годится аналогия
@@papaschultz ну да, уменьшать.
Для длин отрезков конечно просто, потому что это примитивнейший одномерный объект. Но и там нужно, чтобы эти "отрезки" не накладывались друг на друга. Просто это гораздо проще реализовать и это делается по сути единственным способом. Одномерность же =). Чуть сложнее ситуация, если это не прямая, а кривая линия. Тут уже либо линейка должна быть гибкой, либо опять-таки нужно уменьшать длину отрезков и после очередного прикладывания поворачивать линейку по касательной к этой кривой.
А в случае площади конечно всё будет гораздо-гораздо сложнее. В принципе в качестве физического площадеизмерителя можно использовать жидкость. Как мы можем измерить объём тела погрузив его в воду, так можно сделать и для площади, но нужно саму фигуру сделать объемной "вытянув" в высоту. В этом случае при известной высоте достаточно будет измерить объём и поделить его на высоту.
Вообщем чем больше измерений тем жизнь конечно сложнее.
@@papaschultz почему же не линейкой. Очень даже линейкой. А циркуль - это разве не линейка? Это способ отложить отрезок одинаковой длины во всех направлениях сразу. Эдакая круговая линейка, которая вращается вокруг фиксированной точки. А линейку в этом случае нужно будет вручную прикладывать в нужном направлении. Но я думаю с задачей соединить линейкой две точки любой человек вообщем-то справится.
@@mrgoodpeople нет, циркуль не линейка. и в математике эти 2 математических инструмента рассмотриваются как 2 разных. И да, линейка именно для соединения 2х и более точек. Для измерения она в математике НЕ используется. Ну вот так есть.
у них футы были?
У всех были ступни.
Греческий-ионический (450 до н. э.) πούς
ступни действительно были у всех, но не только лишь все решились использовать их как меру ПЛОЩАДИ
В Греции все есть... то есть было ;)
@@tufoed когда говорят пятифутовый квадрат имеется в виду, что его площадь равна пяти квадратным футам, а сторона соответственно корень из 5. Это просто речевой оборот. Не нужно тут придираться.
шьёрт побери! Как раз днями начал слушать Теэтет в аудиоверсии (читает Прудовский)
5 футов - это где-то 1,5м. Привет из ДнД)
5футов - это размер (межрельсовое расстояние) железнодорожных путей "русского стандарта"...
Фут это нога размер ступни имеется в виду
Математика стирает границы между прошлым и настоящим, и между странами тоже. Иногда смотришь англоязычные вузовские лекции по математике, и видишь те же определения, те же теоремы и доказательства, которым учился сам, и думаешь себе: да они же говорят на том же языке, что и мы!
Вроде древние греки очень верили гармонию и то что рациональыми числами то есть отношением двух целых можно выразить любое значение. Поэтому первого грека приведшего четкое доказательство иррациональность корня из двух греки просто убили. И только значительно позже они признали ирациональность некоторых чисел.
За борт с корабля, емнип, выбросили...
И нифига не у причала.
😏
💥
Феодор точно не знал английского языка! Я бы скорее употребил слово "трёхстопного" квадрата (foot на чешский переводится как "стопа").
Число 17 знаменательно также тем, что Гаусс нашел возможность построения при помощи циркуля и линейки правильного семнадцатиугольника. Более того, затем он определил общий критерий нахождения чисел, соответствующих количеству сторон, при котором возможно построение правильного многоугольника при помощи циркуля и линейки.