Как решать такие системы?
HTML-код
- Опубликовано: 9 фев 2025
- Готовим Песочный ПИРОГ • Сметанный, очень вкусн...
Канал @arinablog
Канал @ValeryVolkov
Instagram: / volkovege
Поддержать Проект: donationalerts....
Группа ВКонтакте: volkovv...
Почта: uroki64@mail.ru
Если решать не алгебраически а геометрически, то можно заметить, что второе уравнение - это сфера с центром в начале координат и радиусом √108, а второе уравнение - плоскость, отсекающая пирамиду с ребрами по 18 и равносторонним треугольником в основании, каждая грань которой - прямоугольный треугольник с прямым углом у вершины. Найдя высоту этой пирамиды равной тоже √108, приходим к выводу, что плоскость касательна к сфере, а значит решение единственное (иначе была бы окружность). Так как вся конструкция симметрична, то x = y = z. Дальше либо алгебраически из первого уравнения, либо геометрически проекцией основаниа высоты, получаем 6.
Тоже сперва о таком способе подумал. Радостно, что есть люди с похожими мыслями.
Вы правы. Я задачу именно так и решил.
Капец,в жизни так не решил бы
@@user-jx4sk2vg7n гениями не только рождаются, но и становятся🙂
Янина, только становятся
Понятны оба способа, но второй очень красивый! Спасибо!
красивый, но смахивает на решение от перебора вариантов: мы ищем, когда ж наконец у нас будет там 0, а если числа будут поболее?
@@666fedr вы очень правы👍
Спасибо огромное! Получаю истинное удовольствие --от объяснений, от уточнений, от различных вариаций решения и данного задания, и множества других! Всегда рада общению с такими учителями. Благодарю!
Два красивых способа решения. Спасибо.
Не перестаю восхищаться способностями автора в поиске сложных и интересных задач! Благодарю в очередной раз и жду новых изюминок))
Это не сложная задача, а скорее легкая. Сложной она была бы если бы в первом равенстве вместо 18 было бы 0
Я восхищаюсь вашим умением простотой объяснения. Как бы я хотел бы так уметь объяснять.как всегда моя оценка бесконечное число звёзд. Спасибо Вам.мне оба способа очень понятны.
Второй способ - просто красота!
Оба способа понятны; мне самой сразу пришел в голову геометрический подход. Такое впечатление, что у Вас в рукаве ещё припасено несколько красивых решений) Впечатление волшебное. Спасибо!
Такие задачи часто встречаются на Олимпиадах. Лайк за второй способ
да если 2 уравнения с 3-я неизвестными имеют ограниченное число решений, значит,как минимум 2 параметра там равны. Но!! решение может быть не единственным,и нужно всегда очерчивать диапазоны значений,и вот по первому 3x^2=108 четко видим 6, но дальше надо проверить сумму, подходит! но на этом нельзя останавливаться, нужно проверять ближайшие значения, меняя диапазоны, ну типа 7 и ...108-49 =59 = 2x^2. Делим. находим среднее. начинаем подбор в пределах диапазона, и там не только 7 будет, там до 10 дойдем
это уравнения для подгона, для примера 7 8 8 получаем прирост от степеней 177/ к сумме 23 - это примерно в 7-8 рах, можно подобрать, если числа целые. А в заданиях, походу, всегда числа одинаковые, чтобы было единственное решение Просто делим сумму квадратов на сумму переменных! пример для 4 4 4 (16+16+16) /12 = 4 , для 5 5 5 3*25/15=5, данный пример 108/18=6.
Примеры вот так бадяжат:
6*6 + 6*6 + 6*6= 6(6+6+6). В задании есть и левая часть и правая, но 6 перед скобкой - это 108/18. Вот он и ответ.
Мой пример:
7 8 8 , получаете 7-8 и ищете их сочетание, 2 параметра будут равны точно, а так как задание подогнано под одно решение, то все 3.
Даже в примере с двумя равными неизвестными видим 7*7 +7*7+7*8 то это будет чуть больше чем 7(7+7+7) . Ответ 7-8.
@@allbirths спасибо, что показали изнанку!🤣
Азамат Гареевич на олимпиадах? Пхахахахха. Систему решать на Олимпиады никто не даст. Это слишком легко
@@Гоша-о4я разве?...
Оба способа понятны! Больше понравился второй способ.
Найдем расстояние от центра сферы (х^2+у^2+z^2=108) до плоскости (х+у+z-18=0) по формуле (учебник геометрии в помощь). Это расстояние =6√3 = R(сферы). Решение одно. Система инвариантна относительно замены х на у, у на z и y на z. Значит, одно решение достигается только при равенстве переменных. Легко его находим
Напоминает преобразования Лоренца для скорости в трехмерном пространстве.
Спасибо за ваш труд!
Так понравилось, что еще раз просмотренных и получено удовольствие
Решите систему ❶:(в задаче нет условия: решить в действительных числах)
𝒙 + 𝒚 + 𝒛 = 𝟏𝟖
𝒙² + 𝒚² + 𝒛² = 𝟏𝟎𝟖
ОТВЕТ: 𝒙 = (𝟔 + 𝜷) ± 𝒊⸱𝜷⸱√𝟑, 𝒚 = (𝟔 - 𝟐⸱𝜷), 𝒛 = (𝟔 + 𝜷) ∓ 𝒊⸱𝜷⸱√𝟑, где 𝒊² = -𝟏, параметр 𝜷 ∀ 𝜷 ∈ℝ
В частности, при 𝜷 = 𝟎, 𝒙 = 𝒚 = 𝒛 = 𝟔.
Как вообще вы написали эти знаки?
@@KingArkon Здравствуйте.
"Как вообще вы написали эти знаки?"
Уточните какие знаки.
Некоторые, возможно, так же как и Вы знаки: ꧁ ꧂
Некоторые *alt + код* (на цифровой клавиатуре справа).
@@true7781 спасибо, понятно. Например, знак + и -, знак бетта и т.д
@@KingArkon Здравствуйте.
"Спасибо, понятно..."
alt + «код» - означает: нажать клавишу "ALT" и *неотпуская её* набрать *Юникод (десятичный) символа* на цифровой клавиатуре справа.
Например символ градуса (°): *alt + 248* --> °.
Как всегда лайк!🌺
Все способы прекрасны. Готовлю ужин и наслаждаюсь Вашими размышлениями. Спасибо
Добрый вечер Валерий. Как жизнь? Всё отлично. Мне больше всего понравился 1 -й способ. Он более интересный обширный и объёмный. А я люблю такие задачи. Спасибо вам большое.
Почему то сразу пришло
6+6+6, 36*3=108,а теперь, докажи:))
Очень полезные обьяснения
Потрясающе!
x+y+z=18 это поверхность с нормальным вектором (1 1 1)
x^2+y^2+z^2=108 шар с радиусом корень из 108.
Найдем минимальное расстояние между центром шара и поверхностью, чтобы найти точку пересечения, окружность пересечения, или пустое множество. Поэтому проводим нормальный вектор через (0,0,0), видим что вектор (1 1 1) можно записать как x=y=z, значит точка на поверхности которая ближе к центру шара это x=z=y=6. А для шара допустим что 3x^2=108, где снова x=6=z=y. Поверхность и шар имеют одну точку пересечения на (6,6,6).
Допустим, если бы поверхность была внутри шара, не на его границе, то ответ будет тяжелее найти, так как ответом будет окружность, с бесконечным количеством ответов (для R чисел).
Как всегда интересно спасибо😘💕
Я решал так: 108 / 18 = 6, тоесть 1 уравнение * 6 = 2 уравнению; 6(x + y + z) = x² + y² + z²; решил это уравнение и получил ответ x = y = z = 6.
как же вы решили? просто мне кажется, что там ход решения станет одинаковым, что будет почти одно и то же)
Я тоже так решила Очень просто и логично.
Красиво, доступно.Спасибо
Большое спасибо!
Второй способ самый понятный и простой. Спасибо
А теперь найдем комплексные корни...
Хотелось увидеть применение формул для решения симметрических уравнений с тремя неизвестными.
Все понятно спасибо
Вот это видео я даже пожалуй сохраню, а то скоро школа, я думаю как раз что то такое будет
Спасибо большое ! Второй способ легче!
Когда я учился в школе, обожал решать такие уравнения. Когда учился в вузе , решал дифференциальные. Через год на пенсию. За всю жизнь мне вся эта муть ни разу не понадобилась.
Зато мозги развились!
Второй способ очень понравился! Оригинально!👌✊🙏💗‼
Благодарю
Валерий, здравствуйте. Хотелось бы Вы систематезировали Ваши уроки по темам....И в начале обсуждалась стратегия решения. Конечно лайк! Но после того, как Вы говорите,, попробуйте, былобы круто услышать Дорогу решения...
Решение x=y=z=6 видно сразу. Делаем замену переменных x=u+6, y=v+6, z=w+6. Из первого уравнения получаем u+v+w=0, из второго получаем u^2+v^2+w^2 +2(u+v+w) +3*36 = 108, то есть, u^2+v^2+w^2 =0. Отсюда u=v=w=0 - единственное решение. Всё считается в уме.
Идеально!)
Второй способ более понятен, спасибо
Я решила первым. Второй - показался интереснее
Я тоже
За несколько секунд я увидел ответ 6, просто пример очень простой, главное методы решений. Нет времени, но я вижу есть и другие методы.
А если несколько изменить задание, заранее перейдя к его геометрической интерпретации - к уравнению сферы и плоскости? При этом ввести параметр - или радиус сферы или правую часть уравнения плоскости. И поставить задачу как поиск параметра, удовлетворяющего условию. Условие хорошо бы задать тоже "геометрически". Например: пересечение сферы и плоскости (окружность) должно проходить через точку с координатами x,y,z. Ну скажем: через три точки x,y,0 x,0,z и 0,y,z - то есть касаться всех трёх координатных плоскостей.
Не знаю, понятно ли растолковал идею. :)
Сейчас попробую покрутить такую задачу
если оценить сразу с помощь неравенства Коши-Буняковского:
(1+1+1)(x^2+y^2+z^2)>=(1*x+1*y+1*z)^2
3(x^2+y^2+z^2)>=(x+y+z)^2
равенство возможно при x=y=z
На глаз видно, что все шестерки подходят
да я тоже успел подобрать все 6 пока даже ролик не начался
Красивые способы.
2 способ просто красота!!!
Мы тут видим систему из двух уравнений с тремя неизвестными. Это означает, что в общем случае решений бесконечно. Но если условие говорит, что система решаема, то мы можем потребовать, чтобы одна переменная зависела от другой. Можно ввести коэффициент пропорциональности между этими переменными, но в таком случае, если этот коэффициент не равен 1, то действительных решений не будет. А далее записываем, например z = y, составляем уже систему из двух уравнений с двумя неизвестными и решаем каким хотим способом.
Блестящее объяснение!
Я рассуждал следующим образом. Минимальная сумма квадратов 3 чисел будет если они все равны, в нашем случае 6. Сумма квадратов будет 108. Любые другие числа в первом равенстве дадут большую сумму квадратов. Т.е. других значений быть не может, кроме равных 6.
Вообще такие системы решаются с переходом в полярные координаты.
Просто тут повезло, что решение только одно а не бесконечное множество.
Szép megoldás!
Очень красиво...
Элегантно!
Оба способа не сложные, но второй более короткий. Спасибо!
Задача для решения в уме. Все три переменных симметричны в уравнениях. Отсюда вывод: либо они равны, либо образуют симметричные тройки чисел. Проверяем первое предположение: из первого уравнения находим сразу ответ 6. Проверяем решение на втором уравнении и удостоверяемся, что предположение было верным.
А если первое предложение не верно, то тогда что делать?
Если кто-то спросит, что такое красивая математика - то это второй способ решения этой системы
Можно гораздо проще: делим второе уравнение на первое, получаем пропорцию, которую перемножаем крест накрест -
18(x^2 + y^2 + z^2) = 108(x + y + z)
Делим на 18, и получаем что x^2 + y^2 + z^2 = 6x + 6y + 6z, из чего делаем вывод, что x = y = z = 6. Тут решение на минуту, половину из которой будешь записывать систему. Единственное, что доказательно моё решение не совсем обоснованное. Можно аргументировать моё решение тем, что возведение в квадрат это резко возрастающая функция, и что поэтому равенство x^2 + y^2 + z^2 = 6x + 6y + 6z выполняется только при равенстве x, y, z, и при равенстве их 6
Второй способ шедевр
Очень хорошее обьяснение
Всё гораздо проще:
Уравнения инвариантны ко всем трем переменным -> следовательно они все равны -> 3х=18 -> х=y=z=6
Два уравнения с тремя неизвестными имеют бесконечное множество решений.
-Познавательно.-
Круто!!
Спасибо
Понятен обе способы,но наиболее эффектный 1 ый
Есть и более сложный способ. :)
xy+xz+yz=108
x+y+z=18
z=18-x-y
xy+(x+y)(18-x-y)=108
y^2+(x-18)y+(x^2-18x+108)=0
D=-3(x-6)^2, D>=0, x=6.
x=6; y=6; z=6
(6;6;6)
Хороший способ в лоб
Ничего этого не делая подобрал все значения)
@@prorider6574 Доказал, что других решений нет?
Мне тоже понравилось ваше решение!🙂
Круто красавчик лайк
Решил двумя другими способами. 1. Как писали ниже, через ангеом, легко и устно. 2. Т.к. 2 ур-я с 3 неизвестными. то переносим зет тупо вправо и смотрим на него как на -говно- параметр. Дальше решаем относительно x,y, которое плавно переходит в u,v. Получится фишка, что в кв.ур-ии окажется неположительный дискриминант, который автоматом приравниваем к нулю и зет приобретает единственное значение 6, ему же равны остальные переменные как кратные корни
Увожаемый учитель . Валерий Волков , у меня есть тоже несколько примеров. Но я не знаю как Вам отправить. Подскажите пожалуйста что нужно делать , чтобы Вам отправить мои примеры. Спасибо за ранее.
В описании канала есть почта.
Класс!
Оба понятны и красивы!
Как и следовало ожидать никакого способа решения "таких" систем не приведено
у Волкова всегда (уровень обобщения) = 0. к сожалению.
С использованием скалярного произведения двух векторов (1;1;1) и (x;y;z) решение устное.Меняя эти два вектора таких систем можно наштамповать сколько угодно.
Выучил так проста
Как бы я решал: так же нашёл бы xy+yz+zx, а по теореме Виета числа x, y и z являются корнями многочлена t³-18t²+108t+a (где коэффициент a неизвестен). При любом a и действительном t производная этого многочлена больше 0, следовательно, двух разных действительных корней у него быть не может, и если его корни действительны, то они равны. Вот так иногда математическое образование мешает находить простые и красивые решения.
что такие уравнения напоминают что нужно искать какие-то линейные операторы . подстановки и т.д. но так оба понравились
на самом деле 4 способа решения, 3 способа оговариваются в школе. 1- геометрический, ниже написали, 2 - подстановка, 3 - сложение (вычетание), вы применили второй и третий способы. Есть самый общий способ решения, он подходит даже для решения бесконечного числа уравнений в системе (но в таком случае решение запишется только в общем виде, такую систему нельзя будет решить очень точно), для ограниченного числа уравнений, конечно, можно решить очень точно (там где нельзя решить первыми тремя). Я говорю о матричном способе решения уравнений. Она составляется из коэффициентов переменных и она должна проверяться на линейную зависимость (независимость) коэффициентов, появится базис этих коэффициентов (то есть такие числа, на которые можно опереться и выявить другие, линейно зависимые числа). Линейная зависимость - когда хотя бы 1 коэффициент можно выразить через другие (хотя бы из одного уравнения) и он не ноль! Линейная независимость - все коэффициенты независимы и равны нулю! Именно линейно зависимые коэффициенты и представляют решение уравнений. Линейная зависимость определяется через определитель матрицы (либо он равен нулю, либо нет), во втором случае может быть только одно единственное решение уравнений (только один коэффициент будет не ноль, все остальные - ноль), в первом случае - решений бесконечное число, так как все коэффициенты будут линейно независимы!
Можно найти решение, если учесть тот факт, что в двух уравнениях системы содержаться две неизвестные (иначе решение не найти). То есть, по сути, или две переменные равны или же все три равны друг другу)))))
Я сразу угадал, без решения. )
Спасибо. Для любого решения (а,в,с) должно быть еще пять решений, получающихся перестановкой. Сколько всего "независимых" решений может быть? Если одно, то сразу получаем ответ x=y=z=6. А вот после этого начинаем манипулировать с системой, чтобы получить пару уравнений, одно из которых (x-6)**2 + (y-6)**2 + (z-6)**2=0, что покажет единственность решения.
можно в данном случае представить сумму (2) уравнения как 6^2+6^2+6^2, ну и снять все квадраты, благо они у каждого одинаковые. а x+y+z как 6+6+6, значит x,y,z=6,6,6
Проще путь через замену переменных: x=6p+6, y=6q+6, z=6r+6. Тогда два уравнения: p+q+r=0 и (р+1)^2+(q+1)^2+(r+1)^2=3. Но левая часть всегда больше либо равна 3 и равна 3 при p=q=r=0. Отсюда x=y=z=6.
Добавлю: если раскрыть квадраты и учесть, что p+q+r=0, то получаем р^2+q^2+r^2=0. Следовательно p=q=r=0.
Мне кажется можно было рассмотреть неравенство Коши между среднего арифметического и среднего квадратического и прийти к выводу , что неравенство достигается при равенстве x=y=z
Да рабочая схема
Неравенство Коши-Буняковского
(x1*y1+...+xn*yn)^2
В математике такие системы называются симметричными. Замена переменных не изменяет систему т е замена x на у на z и т д .Отсюда сразу вытекает что неизвестные равны и получаем решение
Халявная задача. А попробуйте решить, когда в первом равенстве не 18 а например 0
гениально
То есть получили точку касания плоскости и сферы. А Вы не думали добавлять к решениям геометрический смысл, или просто изображение, график? Часто красивые картинки получаются.
на сферу очень похоже, можно с этим дальше думать и работать ахах
Куда я нажала, куда я попала.любииии вы мозг👍👍👍👍приклоняюсь перед вами.я поняла какая я ноль во всех тих x y z 😯
Спасибо
Понравился
Второй
Система от индусов! Там 108 число божественное.
Хотя вроде все верно, тем не менее не покидает ощущение, что барон Мюнхгаузен сам себя достал за волосы из болота)
Годный второй метод
Красиво, логично! Увы, сам решил только подбором. Незачёт.
Такой способ тоже часто подходит.
Методом угадывания получилось решить за 3минуты))
Один только вопрос: где на практике/в обычной жизни применяются эти вычисления?
В супермаркете ;)
Эта задача ведь решается применением неравенства между средним арифметическим и средним квадратическим?
да, это задание на тупость, а можно сделать так, чтобы не решалось
Ну да интересный подход идея рабочая должно получится
Первый раз слышу о среднем квадратическом!
@@НатальяРусяева-г1г среднее квадратичнеское (или квадратичное, не помню уже если честно) это квадратный корень из половины суммы квадратов заданных чисел
Əla 👍
Красиво
Чисто геометрически это возможно решить? Явно выглядит как сложная задача для этого. Плоскость и сфера в 3 возможных расположениях.
Возможно и очень даже легко) Просто нужно проверить не является ли эта плоскоть касательной к сфере. Ввиду симметричности всех уравнений относительно x, y и z очевидно, что если плоскость касается к сфере, то касается в точке, где биссектриса трехмерного угла между тремя положителными полуосями пересекается со сферой. Координаты этой точки легко найти как стороны куба, диагональю которого является радиус сферы - sqrt(108) / sqrt(3) = sqrt(36) = 6. (6, 6, 6) удовлетворяет уравнению плоскости, следовательно плоскость касается к сфере, а значит больше общих точек между ними нет.
@@archilarkania7203 Я доказал, что плоскость касательна к сфере, что еще нужно?
Вообще, подобные системы описываают окружность в пространстве(пересечение сферы и плоскости) Ну а здесь мы имеем частный случай, когда плоскоть касается сферы!
Ну а наиболее вероятный случай - это когда сфера и плоскость не пересекаются и не касаются др.друга! Тогда что бы вы не делали и какими бы способами не решали вы бы не нашли решения!
Система уравнений с 3 неизвестными при 2 уравнениях вместо трёх. Следующий этап: х+у=7 найдите у