Шиз поясняет. Дискриминант

Поделиться
HTML-код
  • Опубликовано: 15 ноя 2024

Комментарии • 170

  • @РоманРузанкин-у1д
    @РоманРузанкин-у1д 9 месяцев назад +137

    произошла дискриминация многочленов

  • @invalidcdkey8060
    @invalidcdkey8060 9 месяцев назад +42

    Хорошо считал запрос общества по узконаправленной тематике и в нужном формате подачи, успехов, не сомневаюсь что взлетишь

    • @SHIZ584
      @SHIZ584  9 месяцев назад +5

      Приятно читать, спасибо!

  • @sobolevmath
    @sobolevmath 9 месяцев назад +18

    Очень интересно! Спасибо большое!!
    (Дискриминант - это квадрат расстояния между корнями х1 и х2 [в квадратном], взять х^2 - 1, сразу видно, что расстояние равно двум, а дискриминант = 4-ём.

  • @worldOFfans
    @worldOFfans 9 месяцев назад +42

    шиз ЖЕСТКО про дискриминант и школьное образование

  • @gradexp
    @gradexp 2 месяца назад +3

    Скорость должна быть x2, иначе смотреть сложно! Ещё sqrt(b^2-4ac) ~ на b^2-час. Ну а честно видео хорошо дало старое понятие переходов от школьной математики к высшей, Спасибо^g!
    Ещё с вашим подходом встать в 7 и разбирать математические формулы, вспомнил старого приятеля Эйлера.

  • @anko8747
    @anko8747 7 месяцев назад +2

    По поводу дискриминанта для лиенйного многочлена: дискриминант вообще можно определять как результант многочлена и его производной, а результант двух многочленов это произведение попарных разностей корней каждого из них. В нашем случае p(t) = t - α, тогда p'(t) = 1 (сделаем вид что многочлен приведён), т. е. получается пустое произведение.

  • @MOU_CTPAX
    @MOU_CTPAX 9 месяцев назад +5

    Просмотрел одно видео и уже влюбился в вашу подачу, все четко и понятно, при этом озвученно глубоким голосом что интересно слушать

  • @prog8123
    @prog8123 9 месяцев назад +40

    Кажется, дискриминант линейной - это 1. По определению:
    a^(2 * 1 - 2) × П = а⁰ × П
    Всё упирается в то, как мы определяем произведение от пустого множества. Логично определить его как умножение на нейтральный элемент по умножению, т.е 1.
    D(ax + b) = 1 * 1

    • @aliguseinov4836
      @aliguseinov4836 9 месяцев назад +6

      Ага, я такого же мнения. Произведение, в котором нет ни одного множителя равно единице

    • @adeinsa
      @adeinsa 9 месяцев назад +5

      я могу ошибаться, но смысла в дискриминанте линейного многочлена нет: дискриманант, к примеру, квадратного трехчлена геометрически характеризует расстояние от абсциссы точки экстремума функции до точки пересечения графика функции с осью Ox. действительно, если D>0, значит расстояние определено и имеются два корня, если D=0, то х1=х2, а следовательно расстояние от точки до самой себя равно 0, и если D

    • @adeinsa
      @adeinsa 9 месяцев назад +2

      более того, я не понимаю на каких основаниях мы определяем, что произведение от пустого множества равно 1. если можно, обьясните этот момент

    • @prog8123
      @prog8123 9 месяцев назад +2

      @@adeinsa аналогично сумме от пустого множества, равной 0: она ни на что не влияет.

    • @КириллБезручко-ь6э
      @КириллБезручко-ь6э 9 месяцев назад +2

      @@adeinsa если не видишь смысла, то это не значит что его нет, а пустое произведение это очень естественное понятие. если рассмотреть некоторый оператор А для многократного применения некоторой операции * для элементов из множества Х, то есть А(x∈X)х, то имея множество У не имеющее общих элементов с Х можно сказать что (А(x∈X)х)*(А(у∈У)у) = А(х∈Х⋃У)х, и в случае если У = ø имеем (А(x∈X)х)*(А(у∈ø)у) = А(х∈Х⋃ø)х = А(x∈X)х. иначе говоря, А(у∈ø)у должен быть нейтральным элементом операции * (если он есть). для суммы это 0, для произведения 1

  • @mroteli
    @mroteli 8 месяцев назад +9

    сижу в 9 классе, скоро огэ и всякое такое. очень сильно интересуюсь математикой и физикой, что мне даже интересно посмотреть что то что я даже не могу понимать в этом. я думаю в будущем что как то хотел бы связать с этим жизнь, поступить куда нибудь, но пока еще есть время подумать до 11 класса. я не понимаю многого всего что возможно говорится в видео, как это выводится, но меня это очень поражает и как то даже вдохновляет. посмотрел твои старые видео по кратным и поверхностым интегралам, как же ниhuя непонятно, но всё так же интересно. я не знаю что это такое но как же это интересно. интересно наблюдать за твоими мыслями, и за тем что ты делаешь в задачах. порой что то вижу сам, но бывает ошибаюсь в чем то. этот канал пробуждает во мне большую любовь к математике и к тому что я не знаю, и что для меня кажется сложным. конечно мне возможно еще далеко до дифферинциальных уравнений, до интегралов, до начал мат.анализа и вышмата, но как же это просто интересно, а у тебя еще и интересно наблюдать за необычными идеями объяснять что то на примере той же доты

    • @Someniatko
      @Someniatko 6 месяцев назад +2

      интегралы будут в 11кл, всего два года) Ну или пройди учебник 10-11кл наперед и узнаешь все

    • @mroteli
      @mroteli 3 месяца назад

      ​@@Someniatko уже через месяц 10 класс. кайфанул, что уже есть учебник на руках:)

  • @zOni413
    @zOni413 9 месяцев назад +7

    Спасибо огромное!
    Раньше я даже и не знал что я не знаю что такое дискриминант. Теперь же я узнал это!
    Всё по Сократу)
    Жаль только, что так и не узнал что такое дискриминант и зачем он нужен..(

  • @НиколайГоголь-м8й
    @НиколайГоголь-м8й 9 месяцев назад +26

    Шиз, ты прям спаситель. Пересдача по высшей алгебре через неделю, у лектора в конспекте какая-то шляпа и мало,что понятно. СПАСИБО!

    • @TurboGamasek228
      @TurboGamasek228 9 месяцев назад

      Я помню, когда перед экзом учил эти дискриминанты, результанты, нихера не понимал, сдал еле на 3, на 3м курсе как то само дошло... поздновато

    • @ФАНТОМ-д1и
      @ФАНТОМ-д1и 9 месяцев назад

      Твой лектор это вовсе не истина в последней инстанции.

    • @ShStepan
      @ShStepan 9 месяцев назад

      Многочлены в 1-ом семестре?😮

    • @stasessiya
      @stasessiya 9 месяцев назад

      @@ФАНТОМ-д1икак и всякие видосы на ютубе. Где истина тогда?

    • @cyberwaldemar
      @cyberwaldemar 9 месяцев назад +1

      ​@@ShStepan проблемы?

  • @M_S_L
    @M_S_L 9 месяцев назад +15

    в последней формуле на 23:33 при умножении на a^4 перепутал знак. должно быть -4b^3d

    • @Petro-c8m
      @Petro-c8m 9 месяцев назад

      Мне кажется что знаки перепутали немножко раньше несколько минут назад. Сигма два и сигма три.

  • @The_Earth_One
    @The_Earth_One 9 месяцев назад +10

    Вообще в школе перед квадратными уравнениями я заболел и пропустил их. Начал восстанавливать знания по книжке. В учебнике вначале учили решать обычные квадратные уравнения путем приведения их к полному квадрату и анализу выражения в части равенства без x. В следующем параграфе уже выводилась общая формула и я сутки ломал голову как научиться решать квадратные уравнения (по формуле или приводить их к полному квадрату), но в итоге понял. Затем показывалось, что вершина параболы это полусумма корней (если они есть), а разность корней выражается через 1/a*sqrt(b^2-4*a*c). Авторы сказали, что неудобно смотреть за разностью корней, так как нам без разницы какой корень больше, а от перестановки корней выражение меняет знак, поэтому возведем выражение в квадрат и умножим на a для упрощения. Получаем, что a*(x2-x1)^2=b^2-4ac. Это выражение назовём дискриминантом и тогда формулы для корней будут такими-сякими. Была ещё сноска, что можно вводить дискриминант и для уравнений больших степеней и он покажет есть ли совпадающие корни (в этом и смысл дискриминанта).
    Тем временем в школе на уроках (как я узнал со слов друга и его тетрадки) с певого же знакомства с квадратными уравнениями дали формулы дискриминанта и корней, но что такое дискриминант не знал никто)))

  • @НурикТурлыбеков-ж2к
    @НурикТурлыбеков-ж2к 8 месяцев назад +1

    Спасибо за видео!Поясни за определитель матрицы, нахой он нужон?

  • @denischirets3890
    @denischirets3890 9 месяцев назад +12

    Ролик начался с того, что на детей просто вываливают дискриминант, по типу "вот, держите" и в итоге произошло примерно то же самое но в общем виде. Хотелось бы уведеть зачем это вообще было введено в математику и что оно отражет

    • @база-г3э
      @база-г3э 9 месяцев назад +4

      Плюсую, то же самое про определитель матрицы

    • @SHIZ584
      @SHIZ584  9 месяцев назад +2

      Я в ролике сказал про то, что дискриминант вводится для того, чтобы узнать, есть ли у многочлена кратные корни

    • @SHIZ584
      @SHIZ584  9 месяцев назад +2

      Чтобы конечное выражение через коэффициенты многочлена было без дробей (без старшего коэффициента в какой-то степени в знаменателе). Это просто удобство, не более

    • @Bloody-hc4qq
      @Bloody-hc4qq 9 месяцев назад

      @@Maksim_C вроде эта штука в такой степени сокращает знаменатели в теореме виета ( чет отдаленное видел в лекциях аржанцева, но строго это не доказывалось ). Еще можно выражать дискриминант через результант вроде как

    • @Rka75
      @Rka75 9 месяцев назад

      @@база-г3э жеесть , а нам попытались объяснить базисы линейной алгебры

  • @mellsir1160
    @mellsir1160 9 месяцев назад +8

    Спасибо за видео! Обожаю смотреть что-то за школьной программой, а у других ютуберов мало что понятно и неинтересно

  • @ivanchernobyl3577
    @ivanchernobyl3577 9 месяцев назад +4

    По идее, дискриминант линейного многочлена должен быть равен 1. Это не вытекает из определения, однако это можно получить, посчитав результант R(ax+b, a) = a, что по теореме есть a*D(ax+b)

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      Спасибо за инфу!

  • @orcrist_not_goddamn_oreo
    @orcrist_not_goddamn_oreo 9 месяцев назад +9

    Многоуважаемый Шиз, скажите пожалуйста, Вы когда-нибудь спите?

    • @SHIZ584
      @SHIZ584  9 месяцев назад +10

      Признаюсь честно, временами бывает такое на самом деле

  • @mr.d3065
    @mr.d3065 9 месяцев назад +2

    Зашёл посмотреть ролик что из-за довольно вызывающего названия. К сожалению, автор так и не ответил на вопрос "Что такое дискриминант?". Да, была упомянута фраза про его алгебраический смысл и надо бы тут остановиться, рассказать про результант (желательно вводить через матричную форму, но тут уже зависит от целевой аудитории канала), производную многочлена, связать это всё воедино, но нет. В итоге откуда такая формула - непонятно.
    Без претензий к автору, чисто взгляд со стороны

  • @KrasBadan
    @KrasBadan 9 месяцев назад +2

    Если честно, после этого видео я перестал понимать что такое дискриминант.
    Раньше я знал, что это расстояние от вершины параболы до корней, а теперь это странный и непонятный объект из симметрических многочленов корней, обладающий непонятными свойствами, который в частном случае параболы является расстоянием от вершины до корней.
    Я не понимаю для чего он нужен, например, в кубических уравнениях.

  • @anime_hater
    @anime_hater 9 месяцев назад +2

    ну вообще в шк в зависимости от того D>,

  • @Jimmy-vg2gd
    @Jimmy-vg2gd 9 месяцев назад +1

    Что такое квадратное уравнение ? Откуда оно появилось ? Что такое функция , что такое график? Свойства графика , что означают ? Пропорции , свойства пропорции .

  • @persivald2148
    @persivald2148 9 месяцев назад +1

    Я думал ты расскажешь почему например в квадратных уравнениях дискриминант b^2-4ac, а в теории методов математической физики при решении уравнений в частных производных и решении характеристического уравнения b^2-ac, учитывая что там dy/dx = (a12±D^(1/2))/a11) и этот дискриминант ещё определяет тип уравнений (эллиптического, гиперболического и параболического типа). Было бы неплохо от тебя послушать про твои методы матфизики или дифуры 1-2го поряда. Думаю много кому интересно будет, самая ходовая тема среди студентов.

  • @patricstar7003
    @patricstar7003 9 месяцев назад +3

    Когда учился в школе в учебнике было написано что это такое и как выводится, но учительница говорила что объяснять слишком долго и все желающие могут сами изучить, а она может объяснить на перемене если кто не поймет, но всë же вывод для 8 класса сложноватый по моему личному опыту

    • @TurboGamasek228
      @TurboGamasek228 9 месяцев назад

      вывод очень простой

    • @patricstar7003
      @patricstar7003 9 месяцев назад +2

      @@TurboGamasek228 может быть и простой, но для среднего ученика в 8 классе это всë же осознать может быть и проблемно

  • @BukhalovAV
    @BukhalovAV 8 месяцев назад +1

    Так а для чего изначально был придуман дискриминант?

  • @worldOFfans
    @worldOFfans 9 месяцев назад +4

    после гайда по вольфраму мне кажется лучше все эти километровые выкладки показывать в ваольфраме, а ручками считать

  • @vielbram
    @vielbram 9 месяцев назад +5

    Хотелось бы очеееень увидеть то, как по кусочкам получается выражение представления дискрииинаниа в виде симметричных многочленов.
    А так, видео супеп! Самый комфортный физмат канал на ютубе, все по-доброму, по-домашнему)

  • @RomanPupovinov
    @RomanPupovinov 9 месяцев назад +2

    До этого видео думал, что дискриминант это штука сугубо для квадратных уравнений, чтобы разделить один долгий рассчёт на два быстрых и иметь возможность недорешивая знать количество вещественных корней. Просвещаете однако))

  • @Drevopol
    @Drevopol 9 месяцев назад +1

    Для начала нужен перевод слова,от которого произошел термин. И чуток истории для полной картины.

  • @DotaMobaUnionRu
    @DotaMobaUnionRu 9 месяцев назад +1

    Пустое произведение по определению равно единице, обычно. Поэтому дискриминант линейного многочлена равен единице, что логично: у линейных многочленов не бывает кратных корней, а значит и нулевого дискриминанта.

  • @wvvwwwvvw
    @wvvwwwvvw 9 месяцев назад

    Ого, качественный материал попался. Спасибо, товарищ!
    Погляди в сторону планшетиков дешевеньких на алишке. И к доске на платформе Miro. А то слышно, как ты мышкой это всё клацаешь))) За это еще раз отдельное спасибо!

    • @SHIZ584
      @SHIZ584  9 месяцев назад +1

      Спасибо за комментарий! Планшетом пробовал пользоваться, мне мышкой удобнее

  • @stephencry
    @stephencry 9 месяцев назад +2

    Я всё же не понял, какой именно математический смысл дискриминанта, где его можно применять, кроме отыскания корней полиномов. Конечно, было интересно, как выводится эта формула, но что из себя представляет эта сущность, - неясно.

    • @SHIZ584
      @SHIZ584  9 месяцев назад +2

      Дискриминант вводится для того, чтобы узнать, есть ли у многочлена кратные корни. Я об этом сказал в ролике. А вот то, что не сказал: множитель a_n^(2n-2) нужен, чтобы конечное выражение через коэффициенты многочлена было без дробей (без старшего коэффициента в какой-то степени в знаменателе). Это просто удобство, не более

    • @don_Alonso_di_Almeyda_i_Valdes
      @don_Alonso_di_Almeyda_i_Valdes 8 месяцев назад

      Дискриминант - это квадрат расстояния между корнями.

  • @regulus2033
    @regulus2033 9 месяцев назад +2

    Сударь, хочу Вас поправить, формулу дискриминанта записывать через модули ( 14:20 ) нельзя, а то как же он отрицательным будет становиться? :-)

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      В комментариях мне уже написали по этому поводу. Согласен, неверное соотношение получается

  • @_Alex_08_
    @_Alex_08_ 9 месяцев назад +3

    Шиз, спасибо тебе! Потрясающее видео)

  • @The_Earth_One
    @The_Earth_One 9 месяцев назад +2

    Несложно понять, что при записи произведения через первые степени мы для x_2 получим 1 неправильную скобку, для x_3 уже будет две неправильных скобки и для последнего x_n будет (n-1) неправильная скобка. Итого (-1)^(1+2+...+n-1)=(-1)^[(n^2-n)/2]
    Проверяем для n=2. Знаем, что нужно умножить на -1 один раз. По формуле получаем (-1)^[(4-2)/2]=(-1)^(1)=(-1).
    Несложно получить, что если n=4m или 4m+1 (где m натуральное или 0), то не нужно умножать на -1 и если n=4m+2 или 4m+3, то нужно умножать на -1. Удивительно то, возникают остатки по модулю 4, а 4 это максимальная степень полинома, для корней которого есть формула в общем виде

  • @Empry28
    @Empry28 9 месяцев назад +2

    Привет, на 23:36, минус ((4b^3*d)/(a^4)), стало плюсом

  • @emilabbasov8310
    @emilabbasov8310 9 месяцев назад +1

    Все школьные учебники дают решение квадратного уравнения в общем виде дополнением до полного квадрата. Потом говорят, что часть под корнем называется дискриминант. Это определение в их изложении.

  • @dazay6511
    @dazay6511 9 месяцев назад +1

    А вот интересно: если в иностранных школах нет дискриминанта как такового, то как они решают параметры / определяют наличие/отсутствие корней / оценивают неравенства? Целиком всё считают? Или не занимаются частью из этого вообще?

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      Мне вот тоже интересно

  • @СергейОрлов-ц4г
    @СергейОрлов-ц4г 9 месяцев назад +2

    Гораздо проще объяснтть ребенку последовательность решений, и что если на некотором этапе получается меньше 0, то пишем корней нет. Чем объяснять почему не вычисляется корень из отрицательного числа. Старательный школьник конечно это поймет, а продвинутый даже под конец будет знать что корень всё-таки есть, только во множестве других чисел. Но подавляющее большинство ноет что им не нужна будет по жизни математика и им будет очень тяжело разобраться в случаях когда коренней нет.

  • @nyb4810
    @nyb4810 2 месяца назад

    3:44
    Хы-хы-хы...МНОГОЧЛЕН

  • @hellsbook3911
    @hellsbook3911 9 месяцев назад

    Шиз, добрый день! Скажите пожалуйста, как называется графический редактор, где вы ведёте свои записи для роликов?

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      Здравствуйте! Пишу в Paint'е, как ни удивительно

  • @adeinsa
    @adeinsa 9 месяцев назад +3

    я могу ошибаться, но смысла в дискриминанте линейного многочлена нет: дискриманант, к примеру, квадратного трехчлена геометрически характеризует расстояние от абсциссы точки экстремума функции до точки пересечения графика функции с осью Ox. действительно, если D>0, значит расстояние определено и имеются два корня, если D=0, то х1=х2, а следовательно расстояние от точки до самой себя равно 0, и если D

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      Согласен с вами, просто нам ничто не мешает произвольным образом определить дискриминант линейного многочлена, чтобы дискриминант существовал для многочлена любой степени. Я согласен, что смысла в этом немного, это интеллектуальная забава в общем-то

  • @ShStepan
    @ShStepan 9 месяцев назад +1

    Сними видео про многомерные ряды фурье или теорию меры🥴

  • @Someniatko
    @Someniatko 6 месяцев назад +1

    Вообще-то в школьных учебниках алгебры 8кл дискриминант вполне себе обосновывается через выделение полного квадрата и разложение на множители, а дальше там показывается почему именно в зависимости от знака этого выражения получается разное количество (вещественных) корней. Вот только сколько на это времени тратит конкретный учитель на уроке, и насколько быстро это скатится в "ну в общем, забейте хрен на это всё и просто запомните формулу" - вопрос риторический.

  • @Надя-к6э
    @Надя-к6э 9 месяцев назад +1

    Ну, в школе без слова "дискриминант" честно говоря было бы неудобно. Пришлось бы говорить "подкоренное выражение из формулы корней квадратного уравнения"

  • @justman5664
    @justman5664 3 месяца назад

    Здравствуй, шиз! Если не секрет, расскажи, где учился и насколько сдал ЕГЭ( если поступал по нему)

    • @SHIZ584
      @SHIZ584  3 месяца назад

      Здравствуй! Учился на мехмате ПГНИУ. Математику 8 лет назад на 96 сдал

  • @Gretanit
    @Gretanit 9 месяцев назад +1

    Двучлен😎

  • @TaperMirror6046
    @TaperMirror6046 9 месяцев назад +10

    потому что запад против дискриминации

  • @TheGnipahellir
    @TheGnipahellir 9 месяцев назад +1

    По поводу дискриминанта линейного многочлена. Его не существует. Как сущности.
    Фанаты групп в коментах, что если я скажу вам, что произведение элементов пустого множества это пустое множество. То есть произведение не равно нейтральной единице (или нулю, или чему-угодно), оно вовсе не существует.
    Дискриминант определяется через произведение разностей отличающихся корней. Корень один, разности корней нет, произведения нет, дискриминанта нет. Да и хуй с ним) Что вы хотели с ним делать?

  • @goldenbug117
    @goldenbug117 9 месяцев назад

    Подскажите что за прога или сайт в которой\м он пишет ?

    • @SHIZ584
      @SHIZ584  9 месяцев назад +2

      Базированный Paint

  • @daiske2867
    @daiske2867 9 месяцев назад +1

    13:50, если я правильно понял, -1 должен быть в степени C[2,n], где C[k,m] количество сочетаний из m по k элементов.

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      Выглядит правдоподобно

    • @regulus2033
      @regulus2033 9 месяцев назад

      Согласен. А Вы заметили, что формула с модулями, которую автор на ходу написал, не верна?

    • @prog8123
      @prog8123 9 месяцев назад

      @@regulus2033 Почему?

    • @regulus2033
      @regulus2033 9 месяцев назад

      @@prog8123 потому что дискриминант может быть отрицательным, а если через модуль записать, то не может)

    • @prog8123
      @prog8123 9 месяцев назад

      @@regulus2033 если D < 0, то либо действительных корней нет, но могут быть мнимые, либо, по формуле, a^(2n -2) < 0.

  • @antibioticknone3057
    @antibioticknone3057 9 месяцев назад

    и зачем он нужен этот дискриминант? как корни с ним связать?

  • @FilSerge
    @FilSerge 9 месяцев назад +1

    Поверхностный видос. Если решил рассказать про дискриминант, то и в результант надо было окунуться. Дискриминант - весьма фундаментальный объект в алгебре, который не только корни дискриминирует.

  • @regulus2033
    @regulus2033 9 месяцев назад

    А зачем коэффициент аn в определении дискриминанта? На случай если уравнение не n степени, а (n-1)( т.е., если аn=0), чтобы тогда было D=0? Просто я пытаюсь найти другое предназначение и не могу. an возводится в чётную степень, соответственно, знак его поглощается и на знак D не влияет.

    • @regulus2033
      @regulus2033 9 месяцев назад

      И получается, при аn=0 D=0 и корней действительно на 1 меньше, но не в смысле кратных, а в смысле вообще их меньше))))

    • @regulus2033
      @regulus2033 9 месяцев назад

      Кстати, в качестве критики, я думал, Вы расскажете о том, как знак D или равенство его 0 влияет на количество действительных или кратных корней, ибо это работает не только для квадратных уравнений. А так спасибо за видео, всех благ!

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      Чтобы конечное выражение через коэффициенты многочлена было без дробей (без старшего коэффициента в какой-то степени в знаменателе). Это просто удобство, не более

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      Когда определяется многочлен степени n, то все-таки считается, что его старший коэффициент ненулевой

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      Благодарю за комментарий. Я в видео лишь упомянул про то, что D = 0 лишь в случае, когда есть кратные корни. Можно, конечно, было по поводу знака D сказать в случае многочленов 3-ей и 4-ой степени сказать, но вроде бы для многочлена произвольной степени какую-то конкретную информацию лишь дает то, равен D нулю или нет

  • @cascadia.
    @cascadia. 9 месяцев назад

    А теперь ждем видео о том как пользоваться дискриминантом

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      В первую очередь бережно и аккуратно

  • @simakokarev8432
    @simakokarev8432 9 месяцев назад +1

    Ё, я теперь тоже шиз!

  • @losskydev7356
    @losskydev7356 9 месяцев назад

    Тема закомплексованного дискриминанта не раскрыта. Или это задача для вольного слушателя?)

    • @SHIZ584
      @SHIZ584  9 месяцев назад +1

      Вольный слушатель волен сделать всё, что пожелает.

  • @simakokarev8432
    @simakokarev8432 9 месяцев назад

    Шиз, что такое латекс?

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      Система компьютерной вёрстки, предназначенная в первую очередь для написания математических текстов

  • @1luffiz
    @1luffiz 9 месяцев назад +2

    Здравствуйте. Расскажите про симметрические многочлены

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      Здравствуйте! Посмотрите мой последний ролик про многочлены в олимпиадах. Там во второй половине ролика про это достаточно подробно рассказано

    • @1luffiz
      @1luffiz 9 месяцев назад +1

      @@SHIZ584 Хорошо

  • @Anton-mp6lc
    @Anton-mp6lc 9 месяцев назад +3

    Шиз, открой какой-нибудь бусти , хочется хоть как-то отблагодарить тебя за то что ты делаешь )

    • @SHIZ584
      @SHIZ584  9 месяцев назад +1

      Спасибо, приятно слышать (читать)! Про это думал, Бусти хочу открыть, чтобы там какой-то допконтент ещё выкладывать. И пока проблема с тем, какой допконтент придумать.

  • @АндрейСова-е5щ
    @АндрейСова-е5щ 9 месяцев назад

    20:50 так в кубе или квадрате?

    • @SHIZ584
      @SHIZ584  9 месяцев назад +2

      Квадрате. Оговорился

  • @cunochinu4533
    @cunochinu4533 9 месяцев назад

    можно было еще графически показать значение дискриминанта

  • @Антон-ь4ш1у
    @Антон-ь4ш1у 9 месяцев назад

    есть инфа что такое определитель матрицы?

    • @SHIZ584
      @SHIZ584  9 месяцев назад +1

      Если воспринимать матрицу как линейное преобразование, то определитель - то, во сколько раз изменится n-мерный объем при действии этого преобразования

    • @Главныйзлодей-щ5к
      @Главныйзлодей-щ5к 9 месяцев назад +4

      Не спрашивай Шиза, он слишком умный, мы все равно ответ не поймем.
      Определитель - это длинна единичного вектора, который задан как раз матрицей, для этого пространства (n - мерного) Помнишь в школе, когда говорить начали за вектора в самом начале, сначала ввели на плоскости два вектора на оси ОХ и ОУ длинной 1. А потом сказали, что если их сложить векторно, то получим вектор с началом в точке (0, 0) и концом в (1, 1) на плоскости, те в 2х измерениях. Вот длинна этого вектора и будет определителем матрицы 2 на 2 с 1 на главной оси и всеми 0 в остальных позициях. Те для n=2 тут будет матрица (1 0
      0 1)
      А если у тебя коэффициенты другие в матрице, те изменили единичные вектора для пространства (растянули, сжали, повернули) то зная изменение итоговое длинны вектора от начального (единичного в нашем двумерном случае), те определителя- ты можешь судить об изменении параметров пространства в котором ты действуешь, те куда и как исказилась картинка.
      А в общем случае измерений сколько угодно может быть и для каждого будет задан единичный вектор, который как раз может быть выражен квадратной матрицей соответствующей размерности. Т.е. по сути матрица эта хитровылюбленная запись единичных векторов на осях(проекций), векторная сумма которых и есть искомый вектор, что задает пространство. А линейное преобразование это переход от одной системы отсчета к другой в той же размерности , но с разными единичными векторами. Для одномерного случая это будет переход в разные единицы измерения длинны например, те как перевести 1 см в дюймы или километры. Тк одномерный, то матрица - одно число и ее определитель тоже самое число. Те определители матриц для 1 см и 1 дюйма будут соотносится как 1 к 2.54. И тут ты понимаешь как выразить 12 см в дюймах. Для 1 см и 1 км каково будет соотношение определителей? Для двумерного это перевод квадратных миллиметров в сотки, акры, гектары, но тут уже вырожденный случай, тк поворота нет относительно осей, что в общем случае может быть. И так далее по мере увеличения мерностей.
      Есть видос , и там Айген вектора как раз и есть эти единичные вектора
      ruclips.net/video/TD2PO6djrEQ/видео.html

  • @Animal_2444
    @Animal_2444 9 месяцев назад

  • @isrealfun7707
    @isrealfun7707 9 месяцев назад +2

    Топ континент

  • @mechmaker9346
    @mechmaker9346 9 месяцев назад

    Эм, а формула дискриминанта же с модулями вообще верна? Для действ чисел все типо ок, но что с комплексными числами? Дискриминант от лин.многочлена не должен быть 0. Ну чисто по логике, как сумма по пустому множеству 0, то произведение по пустому множеству 1.

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      Вы правы, в случае комплексных корней это уже некорректно. Не подумал об этом в моменте. Спасибо за замечание!

  • @cafededam8186
    @cafededam8186 9 месяцев назад +1

    шизеем потихоньку

  • @oliverrois5475
    @oliverrois5475 9 месяцев назад

    Какой графический планшет используете?

    • @SHIZ584
      @SHIZ584  9 месяцев назад +2

      Никакой. Я пишу мышкой

    • @prog8123
      @prog8123 9 месяцев назад

      ​@@SHIZ584легенда

    • @Унитаз-т8ъ
      @Унитаз-т8ъ 9 месяцев назад

      ​@@SHIZ584чечечеч так аккуратно

    • @SHIZ584
      @SHIZ584  9 месяцев назад +1

      @@Унитаз-т8ъ 10 лет практики

  • @kingofowlsdev
    @kingofowlsdev 9 месяцев назад +1

    шиз, го видос про теорему виета и основуб теорему алгебры!!

    • @SHIZ584
      @SHIZ584  9 месяцев назад +1

      Про теорему Виета рассказывал в своем последнем ролике про многочлены. Про основную теорему алгебры можно будет рассказать, если до ТФКП доберусь

    • @kingofowlsdev
      @kingofowlsdev 9 месяцев назад

      @@SHIZ584 а ну хайпово, ждем тогда про видосик про основную теорему алгебры

  • @alexeyshnaider9290
    @alexeyshnaider9290 9 месяцев назад +1

    Я не знаю высшую алгебру, но очень интересно❤.

  • @2021-ed4db
    @2021-ed4db 9 месяцев назад

    Шиз, будет ли видео про многочлены от одной переменной и нескольких переменных? И что F[x] -факториальное кольцо

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      У меня есть пара видео с решением задач о многочленах. Пока отдельного ролика с сугубо теорией про многочлены не планировал

    • @nikitakrivo456
      @nikitakrivo456 9 месяцев назад

      Интересная тема. Я бы посмотрел такое от Шиза

  • @TheGnipahellir
    @TheGnipahellir 9 месяцев назад +2

    Да, само слово всегда было непонятным. Детерминант детерминирует, касательная касается и так далее. А этот что дискриминирует? Я так для себя объяснил: дискриминант разделяет корни, обособляет их, а если равен нулю, то дискриминации нет, все равны.

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      Мне нравится такое объяснение

  • @goldfix8112
    @goldfix8112 2 месяца назад

    А я вообще востоковед

  • @ТатьянаРужникова-ь8о
    @ТатьянаРужникова-ь8о 9 месяцев назад +1

    У диктора проблемы. Никак не может, мягко сказать, разродиться.

  • @deefryc
    @deefryc 9 месяцев назад +2

    шиз, а ты сможешь доказать или опровергнуть гипотезу Римана?

    • @SHIZ584
      @SHIZ584  9 месяцев назад +1

      Не смогу)
      Мне всей жизни для этого не хватит. Может даже вечности не хватит

    • @Pauk_-iw9fm
      @Pauk_-iw9fm 9 месяцев назад

      ​@@SHIZ584а сможешь объяснить что это такое?

    • @deefryc
      @deefryc 9 месяцев назад

      @@SHIZ584 а мне не хватит вечности в квадрате

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      @@Pauk_-iw9fm Вот объяснить уже смогу

    • @demantools
      @demantools 9 месяцев назад

      Я бы тоже послушал, про гипотезу Римана

  • @purwic
    @purwic 9 месяцев назад +2

    шизойдная дискриминация

  • @НиколайВечтомов-и2к
    @НиколайВечтомов-и2к 9 месяцев назад +1

    Наконец то , почему в школе так не объяснять .

  • @wergit-pv2wy
    @wergit-pv2wy 9 месяцев назад

    У нас в школе было в учебнике доказательство решения через дискриминант

    • @SHIZ584
      @SHIZ584  9 месяцев назад +1

      В школе показывают вывод формулы корней квадратного уравнения и говорят о том, что выражение под корнем в формуле - дискриминант. Я вывел выражение для дискриминанта, исходя из его определения в алгебре

  • @Михаил-у8п1ц
    @Михаил-у8п1ц 9 месяцев назад +1

    А зачем он нужен так и не объяснил. Без этого это такая же искусственная сущность

    • @SHIZ584
      @SHIZ584  9 месяцев назад +1

      Я в ролике сказал про то, что дискриминант вводится для того, чтобы узнать, есть ли у многочлена кратные корни

    • @Михаил-у8п1ц
      @Михаил-у8п1ц 9 месяцев назад

      @@SHIZ584 хорошо. По знаку дискриминанта квадратного трехчлена можно узнать какие корни, комплексные или действительные. Есть ли подобное свойство у старших дискриминантах?

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      @@Михаил-у8п1ц На Википедии можно почитать про дискриминант многочленов 3-ей и 4-ой степеней. Там рассуждения о знаке дискриминанта приведены

  • @Petro-c8m
    @Petro-c8m 9 месяцев назад

    Дискоиминант равен определителю. Тема не раскрыта.

  • @brick1422
    @brick1422 5 месяцев назад

    Нихуя непонятно

  • @Metal_dead
    @Metal_dead 9 месяцев назад

    Нафига. У нас в школе дискрименант выводили и показывали откуда он получается

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      В школе показывают вывод формулы корней квадратного уравнения и говорят о том, что выражение под корнем в формуле - дискриминант. Я вывел выражение для дискриминанта, исходя из его определения в алгебре

    • @Metal_dead
      @Metal_dead 9 месяцев назад

      @@SHIZ584 да, возможно, не объясняют что такое дискриминант и зачем он нужен. Кстати, из вашего видео я тоже не понял зачем он нужен, кроме как для решения квадратного уравнения. Но. В видео вы сказали, что в школе вам дают формулу говорят что это дискриминант и не объясняют откуда он берётся. И именно с этой вашей формулировкой я не согласен. Показывают откуда он берется

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      @@Metal_dead В видео я сказал, что по сути D = 0 у многочлена есть кратные корни

    • @Metal_dead
      @Metal_dead 9 месяцев назад

      @@SHIZ584 очень полезно. Больше интересует иной случай, что эта величина показывает, если не равен нулю. Ещё ты в конце предположил что у многочлена первой степени дискриминант равен нулю, что явно противоречит этому утверждению

    • @SHIZ584
      @SHIZ584  9 месяцев назад

      @@Metal_dead Я согласен с вами, поэтому я и оставил это в конце в виде вопроса. В комментариях уже написали, что куда логичнее положить D = 1 для линейного многочлена