A very nice olympiad question | How to solve (4 + \sqrt{5})^x + (4 - \sqrt{5})^× | Algebra |

Поделиться
HTML-код
  • Опубликовано: 21 дек 2024

Комментарии • 336

  • @AbasKial-fo5rp
    @AbasKial-fo5rp 3 месяца назад +7

    Verrrry verrrty good tank you🙏🙏🙏

  • @lornacy
    @lornacy 2 месяца назад +1

    Nicely explained

  • @edwinwelch1393
    @edwinwelch1393 4 месяца назад +2

    Excellent. Thanks for this. Keep them coming.

  • @cemsentin
    @cemsentin 7 месяцев назад +11

    (4+Sqrt15)^x+(4-Sqrt15)^x=62
    Due to (4-Sqrt15)*(4+Sqrt15)=1 or 4-Sqrt15=1/(4+Sqrt15),
    (4+Sqrt15)^x+[1/(4+Sqrt15)]^x=62
    (4+Sqrt15)^x+[(4+Sqrt15)^(-1)]^x=62
    (4+Sqrt15)^x+(4+Sqrt15)^(-x)=62
    After using y=(4+Sqrt15)^x, so
    y+1/y=62
    (y^2+1)/y=62
    y^2+1=62y
    y^2-62y+1=0
    Hence, y1=31-8Sqrt15 and y2=31+8Sqrt15 are solutions.
    1) For y=31-8Sqrt15,
    (4+Sqrt15)^x=31-8Sqrt15,
    (4+Sqrt15)^x=(4-Sqrt15)^2
    (4+Sqrt15)^x=[(4+Sqrt15)^(-1)]^2
    (4+Sqrt15)^x=(4+Sqrt15)^(-2)
    x1=-2 is solution.
    2) For y=31+8Sqrt15,
    (4+Sqrt15)^x=31+8Sqrt15
    (4+Sqrt15)^x=(4+Sqrt15)^2
    x2=2 is solution.

  • @johnstanley5692
    @johnstanley5692 5 месяцев назад +15

    Easier? Define Z(n) = (x^n)+ 1/(x^n), Z(0)=2, then Z(n+1)= Z(n)Z(1) - Z(n-1). Here Z(1) = 8. Z(2) = Z(1)*Z(1)-Z(0) = 62. Hence n=2.

    • @Georg.Löding
      @Georg.Löding 2 месяца назад

      Not really. For we have two answers: n = 2; n = -2

  • @ujjaldasgupta4456
    @ujjaldasgupta4456 5 месяцев назад +11

    Nicely you explained the problem.❤❤

    • @haroldosantiago819
      @haroldosantiago819 5 месяцев назад +1

      Very smart teacher...

    • @boguslawszostak1784
      @boguslawszostak1784 2 месяца назад

      @@haroldosantiago819 Pattern is
      a + b = c
      b=1/a
      a+1/a=c
      a^2+1=ac...
      Nothing special.

  • @ndayehassan2627
    @ndayehassan2627 7 месяцев назад +3

    I like the way you teach 🎉🎉

  • @The2000Bobby
    @The2000Bobby Месяц назад

    amazing!

  • @jaybazu
    @jaybazu 5 месяцев назад +1

    Great job...

  • @hanswust6972
    @hanswust6972 4 месяца назад +2

    Really nice trick, indeed; thanks!

  • @vitotozzi1972
    @vitotozzi1972 7 месяцев назад +8

    Awesome!

  • @sudhirjoshi7782
    @sudhirjoshi7782 Месяц назад

    Nice work.

  • @bkp_s
    @bkp_s 6 месяцев назад +4

    You specifically are too great to praise. Really sir

  • @IbraheemMatanmi
    @IbraheemMatanmi 7 месяцев назад +2

    well done sir you make this problem so very easy

  • @TariqHussain-u6c7j
    @TariqHussain-u6c7j Месяц назад

    Excellent ❤

  • @arturdietrich
    @arturdietrich 22 дня назад

    solved by try 😊

  • @1976anands
    @1976anands 5 месяцев назад +4

    That was Smooth

  • @netravelplus
    @netravelplus 6 месяцев назад +4

    Wonderful explanation.

  • @labiamajora3903
    @labiamajora3903 5 месяцев назад +1

    Thanks. You explained very nicely.

  • @pure-mathematics
    @pure-mathematics 7 месяцев назад +3

    Great 👍 job

    • @SpencersAcademy
      @SpencersAcademy  7 месяцев назад

      I am grateful, man. Glad you enjoyed it.

  • @dujas2
    @dujas2 6 месяцев назад +6

    I admit to lucking my way into a solution. Add 2 to both sides and take the square root and it becomes clear that x/2=1 works.

  • @RahatFahmida
    @RahatFahmida Месяц назад

    Thanks

  • @fahadabdullah3046
    @fahadabdullah3046 6 месяцев назад +1

    I look forward for more videos like this. Great job on the solution and explanation

  • @Hobbitangle
    @Hobbitangle 7 месяцев назад +14

    Let a=4-√15 as a constant
    Then
    a^x+1/a^x=62
    Consider the following transformation
    (a^(x/2)+1/a^(x/2))^2=a^x+1/a^x+2=62+2=64
    so
    a^(x/2)+1/a^(x/2)=√64=8
    Let u=a^(x/2)
    u+1/u=8
    u²+1=8u
    u=(8±√(8²-4))/2=(8±√60)/2=4±√15
    (4+√15)^(x/2)=4±√15
    x/2=±1
    The answer:
    x=±2

    • @SpencersAcademy
      @SpencersAcademy  7 месяцев назад +1

      That's a fantastic solution you have here.

  • @prince495
    @prince495 2 месяца назад +3

    By hit and trial put x=2 it will be (a+b)^2 + (a-b)^2 which will be 2(a^2+b^2) which is 2*(4^2+√15^ 2)= 2*(16+15)= 2*31= 62 which statisfies so x=2

  • @mayaq8324
    @mayaq8324 5 месяцев назад

    Entertaining!

  • @ManojkantSamal
    @ManojkantSamal 2 месяца назад +1

    Respected Sir, Good evening

  • @andrec.2935
    @andrec.2935 6 месяцев назад +1

    Legal, muito bem explicado!

  • @michaeledwards2251
    @michaeledwards2251 7 месяцев назад +1

    Inspection the number types of the equation reveals
    (a) 4 and 62 are rational numbers, (b) root(15) is irrational,
    (c) If x is non-integer, root(15)^x is irrational,
    (d) if root(15) is raised to an odd integer, the result is irrational,
    Showing x is an even integer.
    Inspecting the numerical values of the equation
    (a-b)^2 = a^2 -2ab + b^2, ignoring b^2 as a first approximation,
    Root(15) is (4 - delta)^2 giving approximately 16 - 8 delta = 15,
    making delta = 1/8 with an estimated error of 1/512. ((1/8)^2 /8)
    Substituting the approximation (4 - 1/8) for root(15) gives
    for the 1st bracket (approximately 8 - 1/8) and for the second bracket (approximately 1/8).
    Investigating the numbers
    1. Assume the 1st bracket is dominant, approximately 8.
    Applying even integer powers of x to 8 gives 8^2 = 64, 8^4 = 64^4.
    2. Assume the 2nd bracket is dominant, approximately 1/8.
    Applying even integer powers of x to 1/8 gives (1/8)^-2 = 64, (1/8)^-4 = 64^4
    (Dividing the log(left hand side)/log(right hand side), and take the nearest even integer as x for the general case.)
    In this instance x = 2 or -2.
    Substituting x =2 into the equation gives
    (a+b)^2 + (a-b)^2 = 2(a^2+b^2)
    substitute a = 4, b = root(15).
    2(16 + 15) = 62.

    • @SpencersAcademy
      @SpencersAcademy  7 месяцев назад

      This is very impressive, I'm not gonna lie. You nailed it. 👏

    • @michaeledwards2251
      @michaeledwards2251 7 месяцев назад

      @@SpencersAcademy
      At the Olympiad level, it is beatable,
      1. No proof (irrational number)^(irrational number) is irrational.
      2. No proof of why the approximation for root(15) gives the same numerical result as root(15) when delta^2 is ignored
      For example
      2((4)^2 + (4 - 1/8)^2 )= 2(16 + (16 -1 +1/64), which gives 62 - 1/64, ignoring delta^2, is 62.
      3. No back substitution of x = -2.

    • @michaeledwards2251
      @michaeledwards2251 7 месяцев назад

      @@SpencersAcademy
      I would love to learn what the answers were to this questions in the Olympiad.
      With thanks for your appreciation.

  • @Fengwunna100
    @Fengwunna100 2 месяца назад

    New commer sir

  • @starthakog
    @starthakog 2 месяца назад +3

    I solved in 2 mints.
    I put those terms as roots of a quadratic equation. Then using the quadratic formula, formed the eqn, and luckily it worked on square.

  • @maths01n
    @maths01n Месяц назад +1

    Good work my fellow Mathematician ❤ keep up with the content I have subscribed

    • @SpencersAcademy
      @SpencersAcademy  Месяц назад +1

      Thank you! 😊. You're welcome aboard.

    • @maths01n
      @maths01n Месяц назад

      @SpencersAcademy happy for you

  • @neilmccoy9390
    @neilmccoy9390 4 месяца назад +2

    Or, for integer x, every 2nd term of binomial expansion is cancelled out. Now try x=1 LHS=8. Now try x=2 LHS=16+15+16+15=62.

  • @yurenchu
    @yurenchu 5 месяцев назад +3

    Solve the equation
    (4+√15)^x + (4-√15)^x = 62
    Note that (4+√15) and (4-√15) are both positive, hence for real values of x , (4+√15)^x and (4-√15)^x exist and are also positive.
    Note also that (4+√15)(4-√15) = 4² - (√15)² = 16 - 15 = 1 , hence (4+√15) = 1/(4-√15) .
    Multiply both sides of the equation by (4-√15)^x :
    [(4+√15)^x] * (4-√15)^x + [(4-√15)^x] * (4-√15)^x = 62 * (4-√15)^x
    [(4+√15)(4-√15)]^x + [(4-√15)^x]² = 62 * (4-√15)^x
    [1]^x + [(4-√15)^x]² = 62 * (4-√15)^x
    ... substitute u = (4-√15)^x ...
    ... note: 1^x = 1 for any real x ...
    1 + u² = 62*u
    1 - 62u + u² = 0
    1 - 2*31u + u² = 0
    961 - 2*31u + u² = 960
    31² - 2*31u + u² = 64*15
    (31-u)² = 64*15
    31-u = ±8√15
    u = 31 ± 8√15
    ... remember u = (4-√15)^x ...
    (4-√15)^x = 31 ± 8√15
    x = ln(31 ± 8√15) / ln(4 - √15)
    Well, actually we can do better. Note that
    31 ± 8√15 =
    = 16 + 15 ± 2*4√15
    = (√16)² + (√15)² ± 2*(√16)*(√15)
    = (√16 ± √15)²
    = (4 ± √15)²
    Hence,
    (4 - √15)^x = 31 - 8√15
    (4 - √15)^x = (4 - √15)²
    x = 2
    and
    (4 - √15)^x = 31 + 8√15
    (4 - √15)^x = (4 + √15)²
    ... remember (4+√15) = 1/(4-√15) ...
    (4 - √15)^x = 1/(4-√15)²
    (4 - √15)^x = (4-√15)⁻²
    x = -2
    So there are two solutions: x = 2 and x = -2 .

  • @rubylyle5182
    @rubylyle5182 3 месяца назад

    Very intelligent

  • @Mb-logic
    @Mb-logic 6 месяцев назад

    Wonderful ❤

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 7 месяцев назад +2

    It's easier to work the determinant of the quadratic equation in p as
    sqrt[(-62)²-4]=sqrt[(62)²-2²]
    =sqrt(64×60)
    =8×2sqrt(15)
    instead of squaring 62 then substracting with 4, having a sqrt of a large number.
    =(62+2)(62-2)
    =64(60)
    =8²2²15

  • @varunmahurkar
    @varunmahurkar 2 месяца назад +3

    It will become super easy if we use "logarithmic with base 2" both side but before that we need to add 2 both side

  • @venkatesanr6758
    @venkatesanr6758 7 месяцев назад +9

    Very complicated but extraordinary explanation. Thanks brother 🎉

    • @SpencersAcademy
      @SpencersAcademy  7 месяцев назад +2

      I'm glad you enjoyed it.

    • @venkatesanr6758
      @venkatesanr6758 7 месяцев назад

      I've one RUclips channel, brother
      youtube.com/@venkatesanmathsacademy8904

  • @TheSiddhartha2u
    @TheSiddhartha2u 5 месяцев назад

    AWESOME

  • @alexjunio_prof
    @alexjunio_prof 7 месяцев назад +2

    Amazing

  • @gwynj
    @gwynj 7 месяцев назад +67

    That started pretty complicated. You can do it quickly by approximation. root 15 = bit less than root 16, = bit less than 4. so you got (bit less than 8) squared + (bit more than 0 squared) = 62. so x can only be 2, anything else is way too big, or way too small. i.e. 8^2 = 64 and 7^2 = 49. plus you're squaring so it can be +2 or -2.

    • @17-harshitbhatt57
      @17-harshitbhatt57 7 месяцев назад +15

      Its not about the answer its about the process and out of the box thinking by this way you're killing the question itself.

    • @filipeoliveira7001
      @filipeoliveira7001 7 месяцев назад +18

      This is not the point of the problem, the point is to learn how to reach the answer rigorously and mathematically. Also, how can you prove those are the only solutions? You can’t, which is why, in any real setting, you can’t approximate your way out of there

    • @mauriziograndi1750
      @mauriziograndi1750 7 месяцев назад +3

      @@17-harshitbhatt57
      You’re pretty right. I was also criticising the long answers before, and the reason was that I didn’t know how to get to the answer systematically and proving it. Better I try to better myself and talk later. You are right here.

    • @AimeMadimba
      @AimeMadimba 7 месяцев назад

      😊

    • @filipeoliveira7001
      @filipeoliveira7001 6 месяцев назад

      @@Maran108???

  • @thummalurusrinivasareddy1078
    @thummalurusrinivasareddy1078 27 дней назад

    Substitute x=2 by trial and error method( a+b)^2+(a-b)^2 =2a^2+2b^2 which is equal to 2×4^2+2(√15)^2= 32+30=62

  • @GretudeMenwube
    @GretudeMenwube 5 месяцев назад +2

    Great job
    Keep it up
    I would like to see trigonometry and calculus olympiad

  • @Maths-lf9ny
    @Maths-lf9ny 2 месяца назад +1

    Thinks

  • @Bokery1000
    @Bokery1000 7 месяцев назад

    Brilliant!!

  • @olga23bmb
    @olga23bmb 6 месяцев назад

    Super cool 👌👍

    • @SpencersAcademy
      @SpencersAcademy  6 месяцев назад

      Thank you! Cheers!
      Glad you enjoyed it.

  • @neilmccoy9390
    @neilmccoy9390 4 месяца назад +1

    2nd term is reciprocal of 1st term. Let A=1st term. So A times eqn is AA+1=62A. So, we can use the quadratic formula to find the solutions.

  • @paulbork7647
    @paulbork7647 Месяц назад

    One can quickly see that all the cross terms (terms containing V15) will cancel, so one can see only the squared terms count. These squared terms are the same for each of the squared expressions, so one can take either one and half the 62 to get 31. 16 (4 squared) plus 15 (V15 squared) is 31, so x is 2. QED

  • @ellerychi2115
    @ellerychi2115 Месяц назад

    1 step: because 4+sqrt{15} near 8 and 4-sqrt{15}

  • @haihuang7529
    @haihuang7529 6 месяцев назад +2

    I solve it in less than 5 minutes, found the same trick used. Thank you.

  • @thientran4948
    @thientran4948 6 месяцев назад +1

    From 31+8V15 =(4+V15)^x .Just using a^x = b = > x = (logb)/loga . Sub number yield x = 2. Save a lot of time.

    • @AnkhArcRod
      @AnkhArcRod 6 месяцев назад

      Yeah, but you get 50% credit only since -2 is also an answer. That too is obvious once you know the answer!

    • @MathsOnlineVideos
      @MathsOnlineVideos 4 месяца назад

      And how do you get the other solution of x = - 2..?

  • @carlosrivas2012
    @carlosrivas2012 7 месяцев назад

    Excelente. Bonito ejercicio....

    • @SpencersAcademy
      @SpencersAcademy  7 месяцев назад +1

      Thanks bro. I'm glad you enjoyed it.

  • @PC_Simo
    @PC_Simo 5 месяцев назад +2

    Both answers worked; and, it seems to me that (a-b)^x = (a+b)^(-x); but I really need to explore that conjecture more, to verify it 👍🏻.

    • @yurenchu
      @yurenchu 5 месяцев назад +2

      That's true only when a²-b² = 1 (which in this particular case, it is), so that (a-b)(a+b) = 1 .

  • @imandiudupihilla6400
    @imandiudupihilla6400 7 месяцев назад

    amaizing

  • @jasbirsinghvirk6910
    @jasbirsinghvirk6910 29 дней назад

    I have read most of the comments and concluded that that the method used in this problem is very good.

  • @billwong6714
    @billwong6714 7 месяцев назад

    Very clever!

  • @kereric_c
    @kereric_c 7 месяцев назад +3

    let p = 4+sqrt(15) ,q = 4- sqrt(15)
    then notice that p+q = 8,p-q=2sqrt(15),pq=1
    then notice that p^2+q^2={(p+q)^2+(p-q)^2}/2=62
    so x=2
    because pq =1 so x=-2 also satisfies the equation
    at the same time p=1/q
    f(x)=p^x+q^x=p^x+1/(p^x)
    when x>0 df(x)/dx >0
    when x

  • @taiwoolajire8297
    @taiwoolajire8297 7 месяцев назад +4

    Nice 🎉

  • @taherismail5425
    @taherismail5425 7 месяцев назад

    That was more than wonderful, and the explanation and interpretation are very excellent. Allah ❤bless your beautiful thinking. What a beauty in algebra and mathematics. Thank you, dear professor.

    • @SpencersAcademy
      @SpencersAcademy  6 месяцев назад +1

      I am really grateful for this. I'll continue to do my best, Sir.

  • @user.275.E.L.
    @user.275.E.L. 2 месяца назад

    👏👏👏

  • @carlinhosnascida
    @carlinhosnascida 6 месяцев назад

    Thank you

  • @enesyldz5994
    @enesyldz5994 6 месяцев назад +32

    Bruh. Why all these channels solve really easy questions and say them olympiad question. Please solve "real" olympiad questions.

    • @Aobix
      @Aobix 5 месяцев назад

      Do you know any channel which actually solve olympiad level question

    • @cookiemonster-nk3xb
      @cookiemonster-nk3xb 5 месяцев назад

      Dude do you want a slap? Shut up and keep stepping..my man the professor has this channel under control.

    • @lolszakjak7420
      @lolszakjak7420 5 месяцев назад +1

      Polish AGH olympiad is really hard

    • @johnencinas4250
      @johnencinas4250 4 месяца назад +1

      Same method applies, as illustrated

    • @vasilesinescu84
      @vasilesinescu84 2 месяца назад

      I agree. Too easy, why not using a title such as solving easy exponential equations instead of words such as Olympiad

  • @akshayaggarwal5148
    @akshayaggarwal5148 2 месяца назад

    x=2,-2 did it in mind

  • @mintprathomkrumint4499
    @mintprathomkrumint4499 6 месяцев назад +1

    You can use 62^2-2^2
    =(60)(64) in the square root. It might be easier.

    • @shmuelzehavi4940
      @shmuelzehavi4940 5 месяцев назад

      Exactly. It might be much easier. How could he miss such an elementary point ?!

    • @noname-ed2un
      @noname-ed2un 5 месяцев назад

      Can you explain this a little bit more

    • @shmuelzehavi4940
      @shmuelzehavi4940 5 месяцев назад +1

      @@noname-ed2un An elementary algebraic identity is:
      a^2 - b^2 = (a - b) (a + b)
      Substitute: a = 62 , b = 2 and you'll get:
      62^2 - 2^2 = (62 - 2) (62 + 2) = (60) (64)
      Have a nice day !

  • @diogochadudmilagres4533
    @diogochadudmilagres4533 3 месяца назад

    1) Expand both binomial in Newton bonimal
    2) Note that most of them cancel each other
    OBS: Consider x natural and test for x = {0,1, 2, 3, 4, ...} At least i tried 🙂

  • @SivaB-g7h
    @SivaB-g7h 2 месяца назад +1

    Guessed in less than 1second 😎😎😎 x=2

    • @Anu55203
      @Anu55203 Месяц назад

      You wont get marks for guessing. You have to solve it.

    • @kareolaussen819
      @kareolaussen819 Месяц назад

      You missed the solution x=-2.

  • @AlexMarkin-w6c
    @AlexMarkin-w6c 7 месяцев назад +5

    f(x)=(4 + sqrt(15))^x + (4 - sqrt(15))^x is symmetrical around x=0. This is easy enough to show that f(x)=f(-x). Also, f(x) is continuous for all x. Therefore, graphs of f(x) and y=62 interest twice. An obvious solution is x=2 f(2)=62, then the second solution for the symmetrical function f(x) around x=0 is x=-2. Solutions: x=-2, x=2.

    • @SpencersAcademy
      @SpencersAcademy  7 месяцев назад +1

      You're absolutely correct. I like your approach.

    • @boredomgotmehere
      @boredomgotmehere 6 месяцев назад

      Your reply is awesome but I do have some questions: How did you know the graph is symmetrical around x=0? Also, how did you figure that the obvious solution of x = 2, is 62? Hope you don’t mind replying. Thanks in advance.

    • @AlexMarkin-w6c
      @AlexMarkin-w6c 6 месяцев назад +2

      @@boredomgotmehere This is a known result to me that a function of the form f(x)= (a+sqrt(b))^x +(a-sqrt(b))^x is even. It can be verified that f(x)=f(-x) in two lines. So f(x) is symmetrical. x=2 being a solution is also obvious to me by looking at the equation. Also, in my past experience, such school exercises as this one, often have one simple solution. If x=2, and x=-2 for a symmetrical function, then the axis of symmetry is x=0.

    • @boredomgotmehere
      @boredomgotmehere 6 месяцев назад

      @@AlexMarkin-w6c I see your point. Thanks for the explanation.

  • @masoudghiaci5483
    @masoudghiaci5483 7 месяцев назад +1

    ❤❤❤❤❤

  • @antoniofaraone5754
    @antoniofaraone5754 5 месяцев назад +2

    the solution for p has the sqrt of (62-2)*(62+2) =60*64=15*2^2*8^2 since there is a difference of squares under the sqrt....so there is no need for your leap of faith in placing a 15 under the sqrt, it comes by itself

  • @adophmadondo7660
    @adophmadondo7660 7 месяцев назад +2

    Where did the plus sign inbetween brackects vanish to? We can use difference of square method ignoring a plus inbetween.

    • @romeob8607
      @romeob8607 7 месяцев назад

      You're thinking too hard.

    • @Cyclic727
      @Cyclic727 7 месяцев назад

      You don't get the solution

    • @herbertwandha6110
      @herbertwandha6110 7 месяцев назад +1

      You are a wonderful prof.....keep it up to help many young aspiring mathematicians.....sholom

  • @desirouspubg6329
    @desirouspubg6329 7 месяцев назад

    Saw the same question in Nust entry test past papers, couldn't figure it out. Now I know it.

  • @sitarsbi
    @sitarsbi 5 месяцев назад

    Simple answer 2

  • @hubertpruvost3271
    @hubertpruvost3271 7 месяцев назад

    Now i understand the -2 solution

  • @KhinMaungSan-qc9uv
    @KhinMaungSan-qc9uv 3 месяца назад

    Approximation method,x=2 insertion can be easy.But if the question x=more than 10,you need more difficult tackling.

  • @KingGisInDaHouse
    @KingGisInDaHouse 7 месяцев назад +2

    I multiplied everything by (4+sqrt(15)) and lucked out on getting 1^x then getting your quadratic equation and instead of doing your guessing process I did (4+sqrt15)^x=31- sqrt(960) I treated it as a logarithmic equation

    • @plucas2003
      @plucas2003 7 месяцев назад

      same and it was easier but i didn't get the -2

  • @BrawlN64
    @BrawlN64 4 месяца назад

    4+sqrt(15)^x
    4+sqrt(16-1)^x
    x=4
    1/62(x^2-sqrt(2)sqrt(x^2-1)^2)^y=1
    62=(4^2-(sqrt(2)sqrt(4^2-1))^2)^y
    Close to 1.8

  • @mdataurrahman1240
    @mdataurrahman1240 7 месяцев назад +2

    Nice

  • @zvonimirkujundzic6867
    @zvonimirkujundzic6867 5 месяцев назад

    Your coleque show this before a few days here! Didnt you see it?!

  • @enternamehere._.
    @enternamehere._. 7 месяцев назад

    I like how didnt search any math but i learnt this today from myteacher and now it gets recommended to me

    • @SpencersAcademy
      @SpencersAcademy  7 месяцев назад

      Yeah, man. RUclips just kinda knows what you want and show it to you.

    • @enternamehere._.
      @enternamehere._. 7 месяцев назад

      Yea lol

  • @bvsprasad5070
    @bvsprasad5070 6 месяцев назад

    62square-4, could have been written as (62+2)(62-2)=8square*4*15

  • @Sieger44
    @Sieger44 5 месяцев назад

    You should explain 1^x always makes 1.

    • @SpencersAcademy
      @SpencersAcademy  5 месяцев назад +1

      1 reased to any power is 1. Hence, 1^x = 1.

  • @dougr.2398
    @dougr.2398 5 месяцев назад

    You’ve missed out in or omitted what can be generalized in this set of techniques that can be applied to other problems

    • @dougr.2398
      @dougr.2398 5 месяцев назад

      (There are no “tricks” in mathematics, only techniques!)

    • @matheusalmeidadamata
      @matheusalmeidadamata 7 дней назад

      ​@@dougr.2398Hi, friend. What is the generalization of this set of techniques? Thank you very much!

  • @bandarusatyanandachary1181
    @bandarusatyanandachary1181 27 дней назад

    Using assumption method x = 2
    (4 + √15)^x + (4 -√15)^x
    =( 4+ √15)^2 + (4 - √15)^2
    {4^2 + 2.4.√15 + (√15)^2} + {4^2 - 2.4.√15 + (√15)^2}
    =(4^2 + 2.4.√15 +(√15)^2) +(4^2 - 2.4.√15 + (√15)^2)
    =4^2 + 8√15 + 15 +4^2 - 8√15 + 15
    2.16 + 15 + 15 (canceling+8√15 and -8√15)
    = 32 + 30
    =62
    =R H S
    Hence assumption is correct
    Therefore x = 2

  • @marcgriselhubert3915
    @marcgriselhubert3915 5 месяцев назад

    f(x) = (4+sqrt(15))^x + (4 -sqrt(15))^x
    As 4-sqrt(15) = 1/(4+sqrt(15) , we have f(x) = a^x + a^-x,
    with a = 4 +sqrt(15), so f(x) = f (-x) for any real x
    So, if x is solution of f(x) = 62, then -x is also solution.
    The function f strictly increases on R+, so if the equation f(x) = 62 has a solution on R+, then it is unique.
    Now, as x =2 is evident solution, it is the unique solution on R+, and thanks to the initial remark: -2 is the unique solution on R-.
    Conclusion: x = 2 or x = -2 are the only solutions.

  • @achalmunot5527
    @achalmunot5527 6 месяцев назад

    Just do rationalisation of 4-root15

  • @Limited_Light
    @Limited_Light 6 месяцев назад +1

    Multiplying both sides by (4 - sqrt(15))^x:
    (4 + sqrt(15))^x * (4 - sqrt(15))^x + (4 - sqrt(15))^x * (4 - sqrt(15))^x = 62 * (4 - sqrt(15))^x.
    ((4 + sqrt(15)) * (4 - sqrt(15)))^x + ((4 - sqrt(15))^x)^2 = 62 * (4 - sqrt(15))^x.
    1^x + ((4 - sqrt(15))^x)^2 = 62 * (4 - sqrt(15))^x.
    1 + ((4 - sqrt(15))^x)^2 = 62 * (4 - sqrt(15))^x.
    Let u = (4 - sqrt(15))^x.
    1 + u^2 = 62 * u.
    u = 31 + 8 sqrt(15) or u = 31 - 8 sqrt(15).
    x = log_[4 - sqrt(15)](31 + 8 sqrt(15)) or x = log_[4 - sqrt(15)](31 - 8 sqrt(15)).
    (4 - sqrt(15))^2 = 16 - 2 * 4 * sqrt(15) + (sqrt(15))^2 = 16 - 8 * sqrt(15) + 15 = 31 - 8 * sqrt(15).
    So, in the latter case, x = log_[4 - sqrt(15)](31 - 8 sqrt(15)) = log_[4 - sqrt(15)]((4 - sqrt(15))^2) = 2.
    In the former case, x = log_[4 - sqrt(15)](31 + 8 sqrt(15)) = log_[4 - sqrt(15)]((4 + sqrt(15))^2) = ln((4 + sqrt(15))^2) / ln(4 - sqrt(15)) = ln((4 + sqrt(15))^2) / ln((4 + sqrt(15))^(-1)) = 2 * ln(4 + sqrt(15)) / (-1 * ln(4 + sqrt(15))) = -2.

    • @SpencersAcademy
      @SpencersAcademy  6 месяцев назад +1

      Excellent delivery

    • @Limited_Light
      @Limited_Light 6 месяцев назад

      Thank you. ​@@SpencersAcademyWould it be ok for me to upload my own version?

  • @SageCog801-zl1ue
    @SageCog801-zl1ue 5 месяцев назад

    There has to a way to further simplify this even the working out.

  • @Gamingmous992
    @Gamingmous992 5 месяцев назад

    Use hit and trial method first put x=1 and then 2

  • @harris5140
    @harris5140 Месяц назад

    By inspection, 62= 15 + 15+ 16 +16, so x=2.

  • @3adimension
    @3adimension 6 месяцев назад

    Por favor, podrias repetirla, pero un poco mas despacio?

  • @zeynephanm8748
    @zeynephanm8748 2 дня назад

    a*2+b*2 =(a+b)* 2-2ab yöntemşyle daha kısa çözülürdü

  • @VictorPensioner
    @VictorPensioner 5 месяцев назад +1

    Let
    a = (4 + √15) ^ (x/2)
    b = (4 - √15) ^ (x/2)
    Tnen
    a² + b² = 62
    Calc
    (a + b)² = a² + b² + 2ab = 62 + 2 = 64 => (a+b) = 8 (because a, b > 0)
    Has the system
    a² + b² = 62
    a + b = 8
    Find (a-b)
    (a-b)² = a² + b² - 2ab = 62 - 2 = 60
    Therefore
    (1) a + b = 8
    (2) a - b = ±2√15

    From (1) and (2)
    2a = 8 ±2√15
    or
    a = 4 ± √15
    or
    (4 + √15) ^ (x/2) = 4 ± √15
    case 1.
    (4 + √15) ^ (x/2) = 4 + √15 => (x/2) = 1 => x = 2 is solution
    case 2
    (4 + √15) ^ (x/2) = 4 - √15
    or
    [ (4+ √15)(4-√15)/(4-√15)]^(x/2) = 4 - √15
    or
    [1/(4-√15)]^(x/2) = 4 - √15
    or
    (4-√15)^(-x/2) = 4-√15 => (-x/2) = 1 => x = -2 is solution
    All solutions are
    x = ±2

  • @SuvriadiPanggabean
    @SuvriadiPanggabean 6 месяцев назад

    3:33 why don't you raise it to the power of 1 with x?

    • @albertobirth
      @albertobirth 6 месяцев назад

      I think it's not necessary. It will be equal 1.

  • @user-loveverkim
    @user-loveverkim 8 дней назад

    X+Y=8,XY=1 X^2+Y^2=62

  • @hellgodghost7224
    @hellgodghost7224 Месяц назад

    2(a²+b²)=(a+b)²+(a-b)²=62
    So, X= 2
    Easy

  • @ManojkantSamal
    @ManojkantSamal 4 месяца назад

    X=2
    2{(4)^2+(root 15)^2}
    =2(16+15)=62

  • @nicotogni
    @nicotogni 23 дня назад

    2 and -2 are obvious solutions. Only the fact that there are no more solutions has to be proved

  • @CLAYTONIANKE
    @CLAYTONIANKE 2 месяца назад

    x = 0 ===>> 1 + 1 = 62 (F)
    x = 1 ===> 4 + 4 = 62 (F)
    x = 2 ===> 30 + 32 = 62 (V)
    S = {2}

  • @abhijeetparasar5977
    @abhijeetparasar5977 7 месяцев назад +1

    Assuming 2 lowest positive insurd answer comes quickly how long