Russian Math Olympiad | A Very Nice Geometry Problem

Поделиться
HTML-код
  • Опубликовано: 18 апр 2024
  • Russian Math Olympiad | A Very Nice Geometry Problem | Square inside a semicircle
    MY OTHER CHANNELS
    ••••••••••••••••••••••••••••••••
    Calculus Booster : / @calculusbooster
    Math Hunter : / @mathshunter
    --------------------------------------------------------------------------------
    Join the channel to become a member
    / @mathbooster

Комментарии • 48

  • @RAG981
    @RAG981 Месяц назад +9

    For the ending I used similar triangles ABC and EBO rather than chord properties. It was simpler to do.

    •  Месяц назад +3

      I did this same way 😁

  • @dmitrymelnik8296
    @dmitrymelnik8296 29 дней назад +6

    Let ABC = \alpha. Apparently, the triangle OCB is isosceles with two sides equal to R, and the angle between them is (180 - 2*alpha). We can either invoke the cosine theorem, or recognize that BC = 2* R*cos(\alpha). From EOB we find cos(\alpha) = \sqrt(2/3). The rest is arithmetic.

  • @jandirpassos5327
    @jandirpassos5327 13 дней назад +1

    I bounced the square to the right side and applied the same properties as the final part of the solution used in the video.

  • @varathan3558
    @varathan3558 29 дней назад +3

    at 7:40 it simpliest to draw the CA line and take cos(OBE)=cos(ABC)! The solution just appears in front of you!

  • @dlspark7965
    @dlspark7965 3 дня назад

    BC = (4/3)*sqrt(3A)
    where A = Area of square OEDF

  • @jonpress6773
    @jonpress6773 Месяц назад +1

    Use coordinate geometry, placing the O at the origin. The equation of the circle is x^2 + y^2 = 10. It's easy to determine the coordinates of points B and E from the givens, so use them to find the equation of line BCm which turns out to be y=x/sqrt(2) + sqrt(5). Solve the two equations together to get the coordinates of point C, which turns out to be (-sqrt(10)/3, 4/3 sqrt(5)). Now we have the coordinates of B and C, so the distance formula gives the answer. Not as elegant as Math Booster's solution, but it still works.

  • @user-gn4mq5cs6e
    @user-gn4mq5cs6e 5 дней назад

    Deop a perpendicular on X, it will cut at x/2 and calculate X straight away

  • @yadonghu6219
    @yadonghu6219 4 дня назад

    连接A,C;三角形ACB为直角三角形。直角三角形ACB与EOB相似,对应边成比例。BC:sqrt(10)=2*sqrt(10):sqrt(15)。BC=20/sqrt(15)。

  • @tituschirila7650
    @tituschirila7650 Месяц назад +2

    after finding BE you can find height from O to BE = OP (equaling area of triangle OBE) and from that half of CB (OP perpendicular from center divides OB by two) and from that by pythagora PB. PB is hlf BE - simple as that.

    • @ST-sd8un
      @ST-sd8un 27 дней назад

      Excelente!
      OP (raíz 15)= (raíz 5)(raíz 10)
      OP= [(raíz 5)(raíz 10)]/[(raíz 5)(raíz 3)]
      OP= raíz 10/raíz 3
      OP=(raíz 30)/3
      Pitagoras
      BP^2 + [(raíz 30)/3]^2 = (raíz 10)^2
      BP^2 = 10 - (30/9)
      BP^2 = 60/9
      BP= 2(raíz 15)/3
      BC = 2 BP
      BC = 4 (raíz 15)/3

  • @hongningsuen1348
    @hongningsuen1348 Месяц назад +1

    One method to solve the problem is to use proportionality equation for corresponding sides of similar triangles ACB (constructed) and EBO after finding radius of the semicircle.
    Notes for students:
    Whenever you see a semicircle, equal radii and Thales theorem should come to your mind.
    Whenever you see right-angled triangles, Pythagoras theorem and similarity of triangles hence proportionality equation of corresponding sides should come to your mind.

  • @MorgKev
    @MorgKev 23 дня назад

    Also by intersecting chords: DE.DE = CE.EB... this is marginally quicker and a bit less messy.

  • @1ciricola
    @1ciricola Месяц назад

    The radius of the circle is the length of line segment DO, which is √10 , since the length of each side of the square is √5. A line drawn between C and O likewise has a length of √10
    ΔCOB is an isosceles triangle. Since line segments EO and OB are known [√5 & √10 respectively], arctan .707 = 35.26°
    The isosceles triangle has two angles of 35.26° ∠CBO and ∠BCO
    The Altitude bisects the base BC at M. The length of each half can be calculated using the cosine function.
    Cos 35.26° = BM/BO = BM/√10
    (.816)(√10) = BM = 2.58, length of BC = (2)(BM) = 5.16

  • @hongningsuen1348
    @hongningsuen1348 Месяц назад

    Method 1 using Thales theorem and similar triangles:
    1. Let BC be x.
    2. Side of square OEDF = √5 (property of square)
    Hence diagonal of square OD = √[(√5)^2 + (√5)^2)] = √10 (Pythagoras theorem)
    Hence AO = BO = OD = √10 (radii of semicircle)
    3. Draw AC to form ∆ABC.
    Angle ACD = 90 (Thales theorem)
    4. In ∆ACD
    AC^2 = AB^2 - BC^2 (Pythagoras theorem)
    = (AO + BO)^2 - x^2
    = (√10 + √10)^2 - x^2
    = 40 - x^2
    AC = √(40 - x^2)
    5. ∆ABC ~ ∆EBO (AAA)
    Hence AC/EO = BC/BO
    [√(40 - x^2)]/√5 = x/√10
    (40 - x^2) = x^2/2
    3x^2 = 80
    x^2 = 80/3
    x = √80/√3 = (√3√80)/3 = √3 √(16 x 5)/3 = (4√15)/3
    Method 2 using intersecting chord theorem:
    1. Side of square OEDF = √5 (property of square)
    Hence diagonal of square OD = √[(√5)^2 + (√5)^2)] = √10 (Pythagoras theorem)
    Hence AO = BO = OD = √10 (radii of semicircle)
    2. In ∆BOE
    BE^2 = BO^2 + OE^2
    = 10 + 5
    BE = √15
    3. Extend DE to G on arc BC to form chord DG.
    DE = GE = √5 (OE is perpendicular bisector of chord DG from centre.)
    4. For chords BC and DG intersecting at E
    DE x GE = BE x EC (intersecting chord theorem)
    √5 x √5 = √15 x EC
    Hence EC = √(5/3)
    5. BC = BE + EC
    = √15 + √(5/3)
    = (4√15)/3

  • @marcgriselhubert3915
    @marcgriselhubert3915 Месяц назад

    The side length of the square is sqrt(5) and the radius of the circle is sqrt(2).sqrt(5) = sqrt(10)
    We us an orthonormal, center O, first axis (OB). The equation of the circle is x^2 + y^2 = 10
    We have B(sqrt(10);0) and E(0; sqrt(5)), then VectorBC(-sqrt(10); sqrt(5)) is colinear to VectorU(-sqrt(2); 1)
    The equation of (BE) is: (x -sqrt(10)).(1) - (y).(-sqrt(2)) = 0 or x + sqrt(2).y -sqrt(10) = 0, or x= -sqrt(2).y +sqrt(10)
    C is the intersection of (BE) and the circle, the ordinate of C is such as: (-sqrt(2).y +sqrt(10))^2 + y^2 = 10, or 3.y^2 -4.sqrt(5).y = 0
    So the ordinate of C is (4.sqrt(5))/3, and its abscissa is -sqrt(2). (4.sqrt(5))/3) + sqrt(10) = (-4.sqrt(10))/3 + sqrt(10) = -sqrt(10)/3
    Finally we have C(-sqrt(10)/3; (4.sqrt(5))/3) and Vector BC(-4.sqrt(10))/3; (4.sqrt(5))/3) and BC^2 = 160/9 + 80/9 = 240/9
    Finally BC = sqrt(240)/3 = (4.sqrt(15))/3.

  • @timc5768
    @timc5768 Месяц назад +2

    Perhaps also:
    By similar triangles DFA and BFD ( equivalent to using intersecting chords theorem, I think):
    [r +sqrt(5))/sqrt(5) = (sqrt(5))/[r - sqrt(5)], where 'r = radius',
    so ' r^2 - 5 = 5', and 'r = sqrt(10)', so BE = sqrt(15) , (by Pythag), and 'AB = 2sqrt(10)'
    Then by similar triangles EOB and ACB : [OB/BE) = [CB/BA] , (= cos(B)), so
    CB = [2sqrt(10)][{sqrt(10)}/sqrt(15)}] = 2sqrt(20/3) = 4sqrt(5/3) = (4/3)sqrt(15)

    • @TheAndreArtus
      @TheAndreArtus Месяц назад

      That is the same way I went with it.

  • @murdock5537
    @murdock5537 15 дней назад

    φ = 30°; area ∎DFOE = 5 → FO = a = √5 → DO = a√2 = r = √10
    ∆ ABC →sin(BCA) = 1 → AB = 2r
    ∆ BEO → EO = r/√2; BO = r → BE = r√6/2 → ABC = δ →
    cos⁡(δ) = 2r/r√6 = √6/3 = BC/2r → 3BC = 2r√6 → BC = (2/3)r√6 = 4√15/3

  • @jpl569
    @jpl569 Месяц назад +1

    Here is another proof… Let H be the projection of C on AB, and ß the angle EBO (also CBH). Obviously, the radius of the circle is R = √10.
    Then tg ß = √5 / √10 = 1 / √2, and sin ß = CH/X, and cos ß = R/BE.
    And also : tg ß = CH / BH.
    As angle COH is 2ß (nice property of the circle !), then :
    X = CH / sin ß = R sin 2 ß / sin ß = 2 R cos ß = 2 R^2 / BE.
    Then X = 2 . 10 / √15 = 4 √15 / 3.
    Thank you for your videos !! 🙂

  • @ExpressStaveNotation
    @ExpressStaveNotation Месяц назад

    Extend DE to make the chord that intersects with chord BC.
    R5.r5 = BE.EC
    5 = r15.EC
    EC = 5/r15
    BC = 5/r15 + r15.

  • @zdrastvutye
    @zdrastvutye Месяц назад

    i have calculated repeatedly the deviation of point c from the circle with interpolation:
    10 print "mathbooster-russian math olympiad":a1=5:l1=sqr(a1)
    20 dim x(3,2),y(3,2):r=l1*sqr(2):xb=2*r:yb=0:yd=l1:@zoom%=1.4*@zoom%
    30 xd=r-sqr(r*r-yd^2):xe=xd+l1:ye=yd:xb=2*r:yb=0:ye=l1:sw=.1:goto 70
    40 dxk=(xe-xb)*k:xc=xb+dxk:dyk=(ye-yb)*k:yc=yb+dyk
    50 dgu1=(xc-r)^2/a1:dgu2=yc^2/a1:dgu3=r*r/a1:dg=dgu1+dgu2-dgu3
    60 return
    70 k=sw:gosub 40
    80 dg1=dg:k1=k:k=k+sw:k2=k:gosub 40:if dg1*dg>0 then 80
    90 k=(k1+k2)/2:gosub 40:if dg1*dg>0 then k1=k else k2=k
    100 if abs(dg)>1E-10 then 90
    110 lg=sqr((xc-xb)^2+(yc-yb)^2):print "der abstand BC="; lg
    120 x(0,0)=xd:y(0,0)=0:x(0,1)=x(0,0)+l1:y(0,1)=0:x(0,2)=xd:y(0,2)=l1
    130 x(1,0)=x(0,0)+l1:y(1,0)=0:x(1,1)=x(1,0):y(1,1)=l1:x(1,2)=xd:y(1,2)=yd
    140 x(2,0)=xe:y(2,0)=ye:x(2,1)=xc:y(2,1)=yc:x(2,2)=xd:y(2,2)=yd
    150 x(3,0)=r:y(3,0)=0:x(3,1)=2*r:y(3,1)=0:x(3,2)=xe:y(3,2)=ye
    160 masx=1000/2*r:masy=700/r:if masx
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @UrievJackal
    @UrievJackal 9 дней назад

    We don't really know, which level of math, this Olympiad demands.
    Therefore, when first time I used a sine for BOE triangle, maybe I was wrong. Maybe children of that Olympiad may not know of trigonometry.
    So the best solution is to use similar triangles BOE and BCA at the end. Thus, BO/BE = x/AB; R/BE = x/2R.

  • @gaylespencer6188
    @gaylespencer6188 Месяц назад +1

    Found angle CBA. Then took Cos (CBA) and multiplied it by the diameter of (2*10^.5) = 5.16......

  • @quigonkenny
    @quigonkenny Месяц назад

    Let r be the radius of the circle and s be the side length of the square.
    As square OEDF has area 5, its side length is the square root of that area, or √5.
    Draw radius OD. In addition to being a radius of the semicircle, OD is also a diagonal of the square. As such, it's length is √2 times the side length.
    r = √2•√5 = √10.
    Triangle ∆EOB:
    EO² + OB² = BE²
    (√5)² + (√10)² = BE²
    BE² = 5 + 10 = 15
    BE = √15
    Draw CA. As C is on the circumference of the semicircle and is the angle between the ends of the diameter AB, ∠ C = 90°. As ∆EOB and ∆BCA share angle ∠B and are both right triangles, ∆EOB and ∆BCA are similar.
    Triangle ∆BCA:
    BC/AB = OB/BE
    BC/2√10 = √10/√15 = √2/√3
    BC = (2√10)(√2/√3)
    BC = 4√5/√3 = 4√15/3 ≈ 5.164

  • @santiagoarosam430
    @santiagoarosam430 Месяц назад

    a²=5→ a=√5→ r= Diagonal del cuadrado =a√2=√5√2=√10→ EB²=(√5)²+(√10)²=15→ EB=√15→ Si G es la proyección ortogonal de O sobre EB y h=OG→ h√15=√5√10→ h=√50/√15 → Razón de semejanza entre los triángulos ACB y OGB = s=AB/OB=2r/r=2→ AC=2h→ CB²=AB²-AC²=(2r)²-(2h)²=(2√10)²-(2√50/√15)²→ CB=20√15/15 =4√15/3.
    Gracias y saludos.

  • @user-zf4jo7do3w
    @user-zf4jo7do3w 10 дней назад

    닮음을 이용하면 선분 BC의 중점을 M이라 했을 때 선분 EB:선분OB=선분OB:선분BM이므로 선분 BM의 길이는 sqrt(20/3) 선분 BC의 길이는 4sqrt(5/3)임을 알 수 있습니다

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho Месяц назад +1

    As in all Geometrical Problems, the Real Problem is: Where to look?
    In this particular case one must look to Line OD and understand that the Diagonal of the Square is equal to the Radius of the Semicircle.
    So, if the side of the Square is equal to sqrt(5); (sqrt(5) * sqrt(5) = 5; then its Diagonal is equal D^2 = sqrt5)^2 + sqrt(5)^2. D^2 = 5 + 5 = 10. So, Diagonal is equal to sqrt(10) ~ 3,2 Linear Units.
    Note that the Diagonal of any Square is always equal to : D = Side*sqrt(2). In this case sqrt(5) * sqrt(2) = sqrt(10); as staed before!!
    Radius = sqrt(10)
    and,
    EB^2 = 5 + 10 ; EB^2 = 15 ; EB = sqrt(15) ~ 3,9 lin un
    By the Theorem of Similarity between Triangles we have :
    BO/EB = BC'/BC : C' is the Middle Point between OF
    sqrt(10) / sqrt(15) = (sqrt(10) + (sqrt(5)/2) / BC
    3,16/3,87 = (3,16 + 1,12) / BC
    0,82 = 4,28 / BC
    BC = 4,28/0,82
    BC = 5,22 Linear Units, approximately.

    • @mickodillon1480
      @mickodillon1480 Месяц назад +2

      Exactly. I missed that somehow! Therefore I found it really hard.

    • @LuisdeBritoCamacho
      @LuisdeBritoCamacho Месяц назад

      @@mickodillon1480 , don't worry. Be happy!

  • @joyhuang7845
    @joyhuang7845 6 дней назад

    有另一左右對稱正方形,畫出來之後,也是利用圓內幕性質,即可求出EC

  • @vcvartak7111
    @vcvartak7111 Месяц назад +1

    You can also join AC and ACB and BOE are similar triangles and take side proportion

  • @ALEducation-mz1jz
    @ALEducation-mz1jz 29 дней назад +1

    🤙Nice geometry problem bro!...

  • @himadrikhanra7463
    @himadrikhanra7463 22 дня назад

    14+ 4root 5....? Line construction...similarly...diameter...Pythagoras

  • @michallesz2
    @michallesz2 13 дней назад

    IF BD=R then AO=OB and OD=R ERROR

  • @constantinfedorov2307
    @constantinfedorov2307 11 дней назад

    Я не очень понимаю, как такая элементарная задачка могла попасть на олимпиаду. В условии дано все - радиус известен, это диагональ квадрата, отрезок BE тоже считается тривиально (стороны EO = √5 OB = √10 => BE = √15), и дальше опять тривиальное подобие треугольников ABC и EBO. BC/AB = OB/EB; BC = (2√10)√(10/15) = (4/3)√15;
    Тут олимпиадой и не пахнет, на ЕГЭ бывают задачи сложнее.

  • @user-zf4jo7do3w
    @user-zf4jo7do3w 10 дней назад

    is this for 8grade students?

  • @chimaths-class
    @chimaths-class 8 дней назад

    Great

  • @alamshaikhahmad2415
    @alamshaikhahmad2415 Месяц назад

    5×5=25×4=100sqrooth=10

  • @wiwa5613
    @wiwa5613 Месяц назад

    |FD| = |OF| = sqrt(5)
    |OD| = r = sqrt(5) x sqrt(2) = sqrt (10)
    |BE| =sqrt (sqrt(10))^2 + (sqrt(5))^2) = sqrt(15)
    P(triangle) OBE = 1/2 x |OB| x |OE| = 5/2sqrt(2) and P(triangle) OBE = 1/2 x h(trangle BOE) x |BE| = 5/2sqrt(2) => h(trangle BOE) = 1/3 x sqrt(30)
    |OB| = |OC| = r = sqrt(10) => r^2 = (h (trangle BOE))^2 +(1/2 x |BC| )^2 => |BC| = 4/3 x sqrt(15)

  • @user-bc9xh9vz8w
    @user-bc9xh9vz8w Месяц назад

    매일 매일 재미있는 수학 영상을 올려주셔서 감사합니다!
    I'm korean student

  • @RafaelCardoso-gu6pq
    @RafaelCardoso-gu6pq 9 дней назад

    Mel, o cara que erra essa aí não acerta nem o local de prova

  • @mehmeteglen1521
    @mehmeteglen1521 29 дней назад

    10 bence bir dakika sürmedi

  • @WlodekCiejkaTV
    @WlodekCiejkaTV 11 дней назад

    There is much simpler solution.
    Angle ACB is 90
    =› triangles ABC and BOE are similar
    =› OB/EB=CB/AB
    =› CB=AB*OB/EB
    =› CB=2√10*√10/√15=20/√15=4√15/3.
    Result the same but solution more elegat.