Nice Olympiad Math | x^2-x^3=12 | Nice Math Olympiad Solution

Поделиться
HTML-код
  • Опубликовано: 21 ноя 2024

Комментарии • 1,1 тыс.

  • @todaaki4109
    @todaaki4109 Год назад +181

    ” X² ーX³ =12” 
    1st left  → X² ーX³ = X²(1ーX)    
    2nd right → 12=4×3= 4×(1+2) )= ( -2) ² ×(1ー ( -2) )
    3rd X= -2

    • @modernsabri6654
      @modernsabri6654 Год назад +15

      The equation third degree have three roots (-2) not enough??
      So he gets another two roots, Imaginary roots.😊

    • @dajo3032
      @dajo3032 Год назад +1

      Well done 👏

    • @todaaki4109
      @todaaki4109 Год назад +1

      >@@dajo3032
      Thank you so much.

    • @mohammadhosseinshahidi7330
      @mohammadhosseinshahidi7330 Год назад +3

      I solved it the same as you

    • @zahidulislam2578
      @zahidulislam2578 11 месяцев назад +1

      I have an another easy way to solve it. And i prove it easyly

  • @vyacheslav-yarmak
    @vyacheslav-yarmak 11 месяцев назад +5

    Графічно. Побудуємо графіки y=x^2 та y=x^3+12. Вони мають одну точку перетину, очевидно аргумент відємний. Значить рівняння має один корінь. Підбираємо, х=-2. Все !!

    • @Keraxe440dxi
      @Keraxe440dxi 10 месяцев назад +1

      فقط القليل من التخمين بوضع 12=4×3

  • @JAMESYUN-e3t
    @JAMESYUN-e3t Год назад +15

    Excellent math question and smart expanation. Muchas gracias

  • @luisalbertogonzalez3586
    @luisalbertogonzalez3586 9 месяцев назад +11

    WOW! I LIKED THIS VIDEO...GOD BLESS YOU...

  • @JPTaquari
    @JPTaquari Год назад +15

    X = -2
    X² * ( 1 - X¹ ) = 12 ( para dar esse valor tem que ser 4 * 3 = 12
    Então, (-2)² - (-2)³ = 12
    +4 + 8 = 12
    Bingo from Brazil!!!!

    • @qwe-my3hu
      @qwe-my3hu Год назад

      인도늠들이 수학을 잘한다고 들었는데 참말이네요..그런데 그 지경으로 살고 있는게 이상하네요

    • @jaylooppworld381
      @jaylooppworld381 8 месяцев назад

      Wrong

    • @tistrya-424
      @tistrya-424 7 месяцев назад

      exactly, thats what i wanted to write here - Noice

  • @pasixty6510
    @pasixty6510 Год назад +11

    If the goal of the olympiad is to solve the problem quickly, I would apply numerical theory first. It’s obvious that x^3 is more than x^2 when x is positive. So the equation can only be solved with x

  • @LarsEllerhorst
    @LarsEllerhorst 11 месяцев назад +27

    It's pretty clear right from the start that x has to be negative, otherwise the right term would be

    • @jagzey
      @jagzey 9 месяцев назад

      what about the complex solutions

    • @LarsEllerhorst
      @LarsEllerhorst 9 месяцев назад +1

      @@jagzey Whatever complex number you put into x, it will never be equal to 12.

    • @Rx800.0
      @Rx800.0 8 месяцев назад

      You can find it up to a certain number by trial and error. But what do you do when asked for a larger number?

    • @LarsEllerhorst
      @LarsEllerhorst 8 месяцев назад

      @@Rx800.0 Sure, most of such equations needs to be calculated properly, but knowing how such functions progress helps you with a good prediction where the solution should be. It will be tricky if the result is a complex value.

    • @СергійРуденко-ц1ь
      @СергійРуденко-ц1ь 6 месяцев назад

      Ми не домовлялися, а я вирішив таким же способом за 20с

  • @maurotivolesi
    @maurotivolesi Год назад +14

    How nostalgic for school! I still remember the amazement when I realized that I was coming to the solution and the joy when I found it. It was just an equation in the end, but for me it was like conquering the world

  • @markdagley4213
    @markdagley4213 Год назад +79

    The last 2 lines on the first column had errors, the last, serendipitously 'correcting' the second to last. In the second to last you forgot to make the 2^3 positive inside the parenthesis. In the last you forgot to make (from the erroneous equation) the x^3 negative. So erroring twice the 'corrected' the equation on the last line. So just erase the second to last equation and your good! All is well that ends well. You passed the test, making 2 bad operations!!!!

    • @soundsoflife9549
      @soundsoflife9549 Год назад +1

      Yeah ! I was wondering how x^3-2^3=x^3+2^3 !

    • @proislam-co6pg
      @proislam-co6pg Год назад +4

      only the second last is wrong

    • @markdagley4213
      @markdagley4213 Год назад

      That depends on how you look at it. To go from the second to last to the last is wrong but it corrects the second to last wrong by being wrong. So if you remove the second to last, only then is the last right.@@proislam-co6pg

    • @uygarbocutoglu4465
      @uygarbocutoglu4465 11 месяцев назад +1

      luckly i decided to read the comments before judjing my retirred maths abilities

    • @ceccilioantoniosilvaayala4127
      @ceccilioantoniosilvaayala4127 10 месяцев назад

      Cuando abris paréntesis por primer vez, 2 al cubo pasa a positivo.

  • @fernandomembrilacortez4768
    @fernandomembrilacortez4768 8 месяцев назад +1

    bommmbaaaa!!!! que fantástico, muy bien profesor. su didáctica es muy clara y enseñadora. muchas gracias

  • @bobwineland9936
    @bobwineland9936 Год назад +23

    By finding that (-2) is a real root we can use long division X^3-X^2+12/X+2 = X^2-3X+6 and then get the imaginary roots. Thank you sir for what you do. 14:2

  • @Synthe_log10
    @Synthe_log10 2 месяца назад +1

    many hate comments here. I wanna appreciate that you explain it and i solved it very well.

  • @bencheng9083
    @bencheng9083 Год назад +31

    Nice. I would use a formal method to solve this problem: 1) observe -2 is a real root. 2) divide x^3-x^2+12 by x+2, the quotient then is Q(x)=x^2-3x+6, now it's quite easy to find other two complex roots of Q(x)=0.

    • @georiashang1120
      @georiashang1120 Год назад

      that quotient method is really usefull solving high power equations.

    • @hn4806
      @hn4806 Год назад

      Yes, my self, I'd always do that way because, in f(x)=0 where f(x) of power of 3 (let's denote it with f3(x)) must be in f1(x)*f2(x) to be solved.
      If the second f2(x) is factorized to f1(x)*f1(x), then 3 solutions all real right away. If not, f2(x) gives 2 solutions from the formula, either real or imaginary.
      That way we don't need x**3 +/- y**3 = (x +/- y)(x**2...) formula. The question is how fast you find the number for the f1(x) i.e. (x - ?). Typically the number
      is small, 1, 2, 3 or -1, -2, -3. Seldom odd case such as -7. I want to think of a systematic way to come up with this number, rather than applying try-and-hit way...

    • @uthoshantm
      @uthoshantm Год назад

      Well, that's assuming you can pick up the -2 by inspection.

    • @CUSELİSFAN
      @CUSELİSFAN Год назад

      no, you dont need inspection. Descartes' Rule of Signs tells you that there IS one negative root.
      They can only be -1, -12, -2, -6, -4, -3.
      Try the edge cases first, that is -1 and -12.
      You see that it must be closer to -1.
      Try -2. That works.
      @@uthoshantm

    • @kimba381
      @kimba381 11 месяцев назад +1

      @@uthoshantm In this case its pretty easy. x is clearly negative, and x^2 is a factor of 12, must be 4.
      If it had been, say 10 rather than 12, whole different kettle of fish.

  • @jovankovacevic3972
    @jovankovacevic3972 8 месяцев назад +1

    Explained in very good way. Thank you so much!

  • @leylaaghazadeh9185
    @leylaaghazadeh9185 11 месяцев назад +15

    Much appreciated. There' s also a simpler way to come up with the answer. If factoring out x^2 , then we have:
    x^2 (1-x)= 12
    There would be just one possible choice left out of three positive pair factors of 12 that includes a perfect square. i.e. 4 and 3. So:
    x^2= 4 and (1-x)= 3
    The only common answer of the above two equations is then: x=-2

    • @onlineMathsTV
      @onlineMathsTV  11 месяцев назад +2

      Bravo!!! you are good at it.

    • @leylaaghazadeh9185
      @leylaaghazadeh9185 11 месяцев назад +1

      Thank you sir 🙏

    • @randymills2660
      @randymills2660 10 месяцев назад +2

      This is just a guess and check method. The preferred way to solve any polynomial equation is to solve for 0 first.

    • @Roman_Ray
      @Roman_Ray 10 месяцев назад +1

      Honestly, knowing that x has to be negative is a dead giveaway, cos it can't be positive (cos subtracting a cubed number (bigger) from the same but squared (smaller) number yet still getting a positive result => x has to be negative), and we also know it's not "1".
      Hmm what number comes next?

    • @Drunkenmaster632
      @Drunkenmaster632 10 месяцев назад

      ​@@randymills2660Neither is that a guess and check not is solving for 0 is the preferred way

  • @ichdu6710
    @ichdu6710 10 месяцев назад +4

    it's easily proofed, that one obvious solution is x= - 2
    alternative solution 1:
    divide x³ -- x² + 12 by x+2 with the so called long division (polynomial division) to find the polynomial of degree 2. solve this quadratic equation to receive two complex solution if needed.
    alternativ 2:
    x³ -- x² + 12 = ( x +2)(x² + ax + 6). find the parameter a by multplication, and comparing both sides.

  • @jan-willemreens9010
    @jan-willemreens9010 Год назад +8

    ... Good day sir, We could also solve the Complex part as follows: X^2 - 3X + 6 = 0 [ Applying Completing the Square ] ... (X - 3/2)^2 - 9/4 + 24/4 = 0 ... (X - 3/2)^2 = - 15/4 ... X - 3/2 = +/- SQRT(- 15/4) ... X - 3/2 = +/- SQRT((- 1)* 15/4) [ Applying i^2 = - 1 ] ... X - 3/2 = +/- SQRT(15/4 * i^2) ... X2.3 = 3/2 +/- SQRT(15) * i / 2 ... X2 = (3 + SQRT(15) * i) /2 v X3 = (3 - SQRT(15) * i) / 2 ... X2 and X3 are COMPLEX CONJUGATE SOLUTIONS, but are certainly NOT IMAGINARY SOLUTIONS, because in general Z = A + B * i is always COMPLEX, and when A = 0, then Z = B * i is both COMPLEX as IMAGINARY! In short : The set of Imaginary numbers (Z = B * i) is a SUBSET of the set of Complex numbers (Z = A + B * i ) ... great presentation by the way sir, and thanking you for your instructive math efforts ... best regards, Jan-W

  • @OwolabiEmmanuel-ke1iz
    @OwolabiEmmanuel-ke1iz 6 месяцев назад +1

    I love your teaching skills

  • @lopezpablo88
    @lopezpablo88 Год назад +3

    No entiendo porque tantos comentarios negativos. Es cierto que el problema es sencillo para ser de una olimpiada de matemáticas pero nunca dijo de qué nivel es... Además la solución es correcta y hay varias formas de llegar a ella. "Intuir" que -2 es una solución y luego factorizar es fácil pero, para mi, tiene más logro llegar a esa conclusión por una vía matemática. Y en las olimpiadas eso se valora.

    • @onlineMathsTV
      @onlineMathsTV  11 месяцев назад +2

      @lopezpablo88, I think you deserve a standing and a clapping ovation from everyone @OnlinemathsTV as far this math challenge comments are concerned, hahahaha...
      I love it when people criticize and correct other constructively with a deep understanding of the point/s in question.
      Here, you have shown a deep level of mathematical prowess.
      Thanks a million for your wonderful contribution to the growth of this platform/channel.
      We all here love and salute your choice of words and wisdom in handling issues sir.
      Maximum respect and deep love to you from all of @OnlinemathsTV sir....❤️❤️💖💖💖💕💕😍😍😍.

  • @AnantKumar-on1rw
    @AnantKumar-on1rw 7 месяцев назад +1

    Great explanation

  • @wafiyashaikh2569
    @wafiyashaikh2569 Год назад +5

    well done sir , I learnt a lot

  • @handwritingcreator
    @handwritingcreator 7 месяцев назад +1

    Great solution, Dear

  • @ЗдоровыйСчастливый

    Отлично так минус на плюс заменил, бро! 👍🏻

    • @dj_multiple_one
      @dj_multiple_one Год назад +1

      я тоже не понял как он так

    • @broomska1
      @broomska1 Год назад +1

      ​@@dj_multiple_oneДа никак. Просто словами проговорил, что типа так неправильно. И в следующей строке написал, как надо. Но неверное представление не убрал.

    • @mallonamolloly2569
      @mallonamolloly2569 8 месяцев назад

      @@broomska1 Вот то, что не убрал - это большущий косяк! Вероятно у них в колхозе так учат.

  • @joyfaustina6979
    @joyfaustina6979 Месяц назад

    I love your method of teaching. Thanks

  • @hgilbert
    @hgilbert Год назад +26

    you made a mistake. to jump from x^2-2^2-x^3-2^3=0 to (x^2-2^2)-(x^3-2^3)=0 is very wrong.
    it should have been (x^2-2^2)+(-x^3-2^3)=0
    and then only you could have proceeded to (x^2-2^2)-(x^3+2^3)=0

    • @SeekingTheLoveThatGodMeans7648
      @SeekingTheLoveThatGodMeans7648 Год назад +2

      yes, a mistake... the intention seems to be "we will group" but the parens are wrong. The way, say, SyberMath shows the intention to group is by underlining first.

    • @richesekanem4525
      @richesekanem4525 Год назад +2

      There was a mistake but he recovered it

    • @alexrozenbom3430
      @alexrozenbom3430 Год назад

      i noticed it too.

  • @joseangelocidreiradaconcei2505
    @joseangelocidreiradaconcei2505 4 месяца назад

    Muito bom, parabéns. Continue postando vídeos. 👏👏👏

  • @kevincozens6837
    @kevincozens6837 11 месяцев назад +6

    When some terms were regrouped and put inside brackets the second line from the bottom left isn't correct but the line below is correct. It wasn't properly explained as to what was going on at that point. Someone who may be a bit weak in their math skills might get confused about that part and why the sign was changed from - to +.

    • @شركةالهرم-ذ2و
      @شركةالهرم-ذ2و 8 месяцев назад

      YES,my brother,he has bigggggggggggg fault
      and his solution is completly fault

  • @luciaagor5311
    @luciaagor5311 11 месяцев назад +1

    FANTASTIC😍😍😍😍😍😍😍😍😍😍

  • @volasvolas3951
    @volasvolas3951 11 месяцев назад +8

    По теореме о рациональных корнях уравнения можно сразу найти корень х=-2, затем поделить исходный многочлен на х+2, а дальше решить оставшееся квадратное уравнение. Стандартная школьная задача, что тут олимпиадного? :)

    • @dough9512
      @dough9512 11 месяцев назад

      But division by zero is undefined?😮

  • @SantoshNag-q2o
    @SantoshNag-q2o 3 месяца назад

    फेक्टर मेथडं है थोड़ा लम्बा है 12=-4-8 कर घात बनाकर हल करने से नया फन्डा समझ मे आया। Thankyou.

  • @sh0bla79
    @sh0bla79 Год назад +10

    wow. that was really cool! thank you for your videos

  • @shasanyaolabode9377
    @shasanyaolabode9377 13 дней назад +1

    interesting wow it is correct

  • @sanaeelalioui6980
    @sanaeelalioui6980 8 месяцев назад +4

    Excelente

  • @chirbhadam
    @chirbhadam 9 месяцев назад +2

    Thanks for your efforts

  • @pauljarju6127
    @pauljarju6127 Год назад +3

    Thank you sir

  • @jyotibista9871
    @jyotibista9871 8 месяцев назад +2

    Nice job

  • @Kroner108
    @Kroner108 11 месяцев назад +15

    Задача решается за 5 секунд в уме... Вот бы у меня в школьные времена были такие простые задачи))

    • @mnnkaz0
      @mnnkaz0 11 месяцев назад

      здравствуйте, а как можно в уме быстро решить? объясните, пожалуйста!

    • @Kroner108
      @Kroner108 11 месяцев назад +4

      @@mnnkaz0обратить внимание на 4 + 8 = 12 и на минус в выражении, и просто понять что х = -2.

    • @professeurkeitagaye3118
      @professeurkeitagaye3118 10 месяцев назад

      C'est bien expliqué mais il fallait préciser l'ensemble dans lequel on travaille dans la question.

    • @---wb5tt
      @---wb5tt 10 месяцев назад

      Да, за 5 секунд, если вы до этого решали схожие примеры....

    • @swerwolf
      @swerwolf 10 месяцев назад

      @@mnnkaz0 никак... Они все топят за "метод подбора", который на самом деле "метод пальца в небо". "Я угадал, потому что подошло" не равнозначно "я решил".

  • @chrissyday67
    @chrissyday67 7 месяцев назад

    I'm a senior, ill in bed with flu and did this in less than a minute in my head - it's obvious from the equation that either x must be negative then you just need to fins a number that when it's square is added to it's cube yields 12 ( the fact it is negative means that minus the cube of it will become positive) is it not obvious that the number is 2? since 4 + 8 = 12. This is the third 'Olympiad' math question I've looked at this afternoon, being too unwell to do much else and all were easily do-able in my head rather than the long-winded solutions. I recently took a senior cognitive test (annual requirement at my age) and am amazed if this is how students are taught to solve these kind of puzlzles. Maybe I should start a "Granny shows you how" you tube series? 😆 Well I have learned something, I know I am not as quick-witted as I was 50 years ago, but I still have some of my marbles 😊

  • @gorbachevaol
    @gorbachevaol Год назад +7

    х^3-х^2-12=0
    Челочисленные корни являются делителями 12.
    х=-2 является
    Схема Горнера (или деление многочлена на многочлен) и получаем квадраратное уравнение с D

    • @hannukoistinen5329
      @hannukoistinen5329 Год назад +1

      What!!! Write normal letters or shut up and stay in Soviet union!!!

    • @ДакаВо
      @ДакаВо Год назад

      @@hannukoistinen5329 retarded yenkee lmao

    • @Pereseld
      @Pereseld Год назад

      @@hannukoistinen5329 I want to stay in Soviet Union)

    • @broomska1
      @broomska1 Год назад +2

      ​@@hannukoistinen5329А причем тут Советский союз?

    • @cortisol1801
      @cortisol1801 Год назад

      ​@@hannukoistinen5329junge, soviet Union ist schon lange vorbei. In welchem Jahr wohnst du?

  • @meltembuz7206
    @meltembuz7206 10 месяцев назад

    Very beatiful explained and correctly solved problem. Because of the third degree term,there must be at least three roots for the equation. İf you draw the diagram of this equation in the analytical plane you will see the roots. I personally was not aware of the equation for root calculation and now learned it. Thank you very much for this informative video

    • @meltembuz7206
      @meltembuz7206 10 месяцев назад

      Plus wolfram alfa gives the exact same roots for the equation, for ones information,who does not belive the solution.

  • @celikkurtoglu3992
    @celikkurtoglu3992 8 месяцев назад +4

    Very good exercise, thank you.

  • @aryupersia6286
    @aryupersia6286 10 месяцев назад +2

    Thank you, You are an excellent!

  • @blue_white1759
    @blue_white1759 Год назад +5

    My solution take only 30 second 😂. I feel very intelligent 😂😂😂 thank you for primary school level olimpic questions 😅😅

    • @gospelvibes374
      @gospelvibes374 9 месяцев назад

      😂😂😂

    • @chrissyday67
      @chrissyday67 7 месяцев назад +1

      Is fthis really for Primary school level? I hope so as I was quite concerned at the fall in scholastic standards

    • @blue_white1759
      @blue_white1759 7 месяцев назад

      @@chrissyday67 this question is easy to answer but you are right. Unfortunately, Every year student standarts are falling down more...

  • @ClarisUgochukwu-mu9pj
    @ClarisUgochukwu-mu9pj 8 месяцев назад

    I like your explication 💭❤️

  • @ЮлияСоловьева-б4щ
    @ЮлияСоловьева-б4щ Год назад +9

    Перенести все влево и исследовать функцию с помощью производной. Построить график и увидеть одну точку пересечения . Это -2. С помощью проверки убеждаемся , что -2 корень уравнения.

    • @lopezpablo88
      @lopezpablo88 Год назад

      Ingenioso. Y si, hay varios caminos válidos 😃

    • @Darius-kb9ew
      @Darius-kb9ew 11 месяцев назад +1

      То чувство, когда решил в уме😁

    • @neokripte
      @neokripte 10 месяцев назад

      Так видно же что x отрицательный, там подбором решается за секунду

    • @ЮлияСоловьева-б4щ
      @ЮлияСоловьева-б4щ 10 месяцев назад +1

      @@neokripte да. Но ещё нужно доказать, что других корней нет.

  • @franakpan
    @franakpan 9 месяцев назад +2

    I love it. Brilliant ❤

  • @Lifefoodkr
    @Lifefoodkr Год назад +4

    X^2-X^3=12 X^2(1-X)=4×3
    X는 음수가 되어야 함으로
    X=-2 이렇게 간단한 문제를
    너무 어렵게 푸네요.

    • @letsbe4129
      @letsbe4129 Месяц назад

      나랑 푼 방식이 같네. 이렇게 하면 간단하게 암산되는데 ㅋ

  • @peterbyrne6394
    @peterbyrne6394 7 месяцев назад

    Very good explanation. Thank you.

  • @88kgs
    @88kgs Год назад +4

    With due respect Sir,
    Just by seeing the equation we can find the answer.. or hit and trial method can also be used..
    Of course we will not be able to find complex answers mentally, but they are as it is rejected for the solution unless asked for in the exam.
    Thank you for sharing this video.
    Regards 🙏🙏

    • @daakudaddy5453
      @daakudaddy5453 Год назад +1

      You must be Indian.
      Trial and error method is not real Mathematics.
      But you guys don't study or care about real Mathematics, nor appreciate it's beauty. To you, finding the answer faster than the other guy in an exam by any means possible is Maths. Higher score is victory. It is not methodical or exhaustive, it's just trick play. Like the difference between a cheap thrill seasonal action film and a timeless classic.

    • @88kgs
      @88kgs Год назад +1

      ​@@daakudaddy5453
      Do something for your frustration, I wish you peace

    • @rrinfinity4912
      @rrinfinity4912 Год назад +1

      ​@@daakudaddy5453The method discussed in the video is also nit methodical, in the sense that it would only work for this cases.
      I guess the most reliable is the cubic formula here or numerical methods, everything else is tricks play.
      What's the point on insulting every student here when most of them are not even responsible for it? Besides, your criticism of students not being exposed to the beauty of math isn't only common in india but everywhere.

  • @kuberannaganathan5244
    @kuberannaganathan5244 6 месяцев назад +2

    Thanks!

  • @nonsencephilosophy
    @nonsencephilosophy Год назад +8

    this guy did 15 min video just to proof that x equals -2 when everyone guessed it in half a minute
    true legend.

    • @nelsoneason5822
      @nelsoneason5822 Год назад +1

      他是在教思考的““方式””
      所以得用簡單的數字帶您思考
      如果今天的常數從原本的12改成64160000或是更多大的數字那就很難30秒解答出來

    • @nonsencephilosophy
      @nonsencephilosophy Год назад

      @@nelsoneason5822 fair point. knowledge of the algorithm is always the most powerful weapon

    • @nelsoneason5822
      @nelsoneason5822 Год назад +1

      @@nonsencephilosophy wow
      you are a nice guy+9999999

  • @DengDut-iu6dt
    @DengDut-iu6dt 5 месяцев назад +1

    I like this topic!

  • @Stan_144
    @Stan_144 Год назад +253

    You made silly error with the sign of 2 to the power of 3 (line 6 of the solution). Then you made another error in line 7. This is ridiculous ...

    • @yitzchakgrinboim1989
      @yitzchakgrinboim1989 Год назад +32

      Plus the question is extremely simple for an Olympiad

    • @juanjuan-mi4gi
      @juanjuan-mi4gi Год назад +5

      Revise su video antes de mostrarlo....

    • @khigia984
      @khigia984 Год назад +25

      Good catch, but his 2 wrongs turned out to be right

    • @AhmedsNjie-hg5du
      @AhmedsNjie-hg5du Год назад +6

      Bro there's nothing wrong in those steps.. Every step is just awesome

    • @yitzchakgrinboim1989
      @yitzchakgrinboim1989 Год назад +14

      @@AhmedsNjie-hg5du dude, it's an easy question, 4+8 us an intuitive solution so you immediately know that one root is -2, then you divide by (x+2) and you solve a quadratic. I don't know why the weird steps..

  • @KaiUga-ni3hk
    @KaiUga-ni3hk Год назад

    Some comments suggests, that x=-2 could be found within 10 seconds. And indeed, x=-2 is an obvious answer. But how to prove, that it is the only answer?
    We all know, that "x^2=4" has not only one answer.
    He broke the equation down to two:
    x+2=0 --> first solution
    3x-6=x^2 --> potential alternative solution(s)
    Therefore the remaining question had been, if the second equation can be solved. Or not. And he listed correctly both complex conjugates --- even x2 and x3 are awkward.
    Well done.

    • @onlineMathsTV
      @onlineMathsTV  11 месяцев назад

      @KaiUga-ni3hk you just pointed out a very salient point which I found difficult trying to make everyone to understand as far this math challenge is concerned.
      On behalf of OnlinemathsTV, I really want to say a very big thank you for your deep understanding of what actually prompt Onlinemaths TV to apply this approach that is being questioned by almost everyone here with a better understanding of things.
      You are good at what you do, maximum respect from everyone here for .
      Above all, we love you dearly and deeply sir....❤️❤️💖💖💕💕😍😍😍

  • @MrKirkMax
    @MrKirkMax Год назад +2

    Согласен с @gorbachevaol. Имплементация алгоритма Горнера, подчеркнула бы структурную инвариантность, обеспечивает внедрение дифференциальных операторов в рамках алгебраического контекста. Так получаемые корни уравнения имеют больший математический смысл, по моему

  • @ffggddss
    @ffggddss 11 месяцев назад +1

    x² - x³ = 12
    Let's see, a square and a cube that add/subtract to 12? Well 2 would work if it were a sum, not a difference: 4 + 8 = 12.
    But wait, we can make that happen just by changing the sign on the 2.
    x = -2
    x² - x³ = (-2)² - (-2)³ = 4 + 8 = 12
    Having found a root, the next step is to factor it out and solve the resulting quadratic.
    x³ - x² + 12 = (x + 2)(x² - 3x + 6) = 0
    x = -2 or x² - 3x + 6 = 0
    x = 3/2 ± ½i√15
    So if you're looking for real solutions, x = -2 is the only one.
    Fred

  • @bamahammer3660
    @bamahammer3660 9 месяцев назад +2

    You prolonged the problem. You could have factored the problem out earlier without going through all those additional steps. But I understand you were trying to show the entire process of thought. Good job.

  • @setyo9998
    @setyo9998 Год назад +6

    2乗の数から3乗数を引いてプラスになる数はマイナスの数であると解る。-1では12ににならない。-2で即+4と-8とで12と解る。

  • @MdsafiulkarimBallal
    @MdsafiulkarimBallal 8 месяцев назад +1

    I like your class

    • @vandemaataram2600
      @vandemaataram2600 7 месяцев назад

      Just watch the channel 'Khelo Maths Ke Saath' also. You'll definitely like it.
      👍

  • @mvqcompany9316
    @mvqcompany9316 Год назад +10

    You made mistake. When you facror out -1, you should have -(x*3+2*2) not (x*3-2*2)

    • @ignatiuswinarto5968
      @ignatiuswinarto5968 Год назад

      No need to use a long pocedure to solve that the value of x is -2. Just use simple arithmatic to get the correct answer

    • @666DomSathanas666
      @666DomSathanas666 Год назад

      I was looking for a comment like yours, I couldn't be the only one who saw this error.

    • @fendibasrifendi4229
      @fendibasrifendi4229 8 месяцев назад

      Yup there was an error on factorisation.

  • @GatkuothMuong
    @GatkuothMuong 9 месяцев назад +2

    Inspiring

  • @user-GlavEng
    @user-GlavEng Год назад +3

    3:42 я не понял, как он превратил х^3-2^3 в х^3+2^3

    • @bobbadner7975
      @bobbadner7975 Год назад

      он ошибся и исправился в следующей строчке.

  • @danielfranca1939
    @danielfranca1939 Год назад +2

    This awesome, u just open my understanding to solving this using this unique method. Thanks for this video sir.

  • @AmirSoleimani-gq8uq
    @AmirSoleimani-gq8uq Месяц назад

    Very good

  • @fisicamatematicasprofewilliam
    @fisicamatematicasprofewilliam 10 месяцев назад

    Excelente video. Nuevo suscriptor a tu canal. like gran video

  • @rcalabri
    @rcalabri 9 месяцев назад

    Felicitaciones por el formidable desarrollo analitico. Sin embargo la solución (x=-2) adviene simplemente por tanteo una vez que te percatas de que DEBE ser un número negativo. Y el proceso mental para hallarla no lleva ni un minuto, sin necesidad de ser una especie de Ramanujan, ni tener un infinitesimo de su talento, por asi hablar

  • @فاتحةفاتحة-ت1ذ
    @فاتحةفاتحة-ت1ذ 10 месяцев назад +1

    good 😍😍

  • @egyptianplanner
    @egyptianplanner 10 месяцев назад

    I solve it in only 7 steps in One minute ❤❤❤
    Really

  • @grzegorzkondracki4630
    @grzegorzkondracki4630 3 месяца назад

    12 = 8 + 4 = 2^3 + 2^2
    -x^3 + x^2 = 2^3 + 2^2
    (-x)^3 + (-x)^2 = 2^3 + 2^2
    -x = 2 => x = -2 - first solution
    Further it's a simple quadratic equation, i.e. mathematical craftsmanship...

  • @SuleimanIbrahim-vc4se
    @SuleimanIbrahim-vc4se 7 месяцев назад

    I like you explanation,it is fantastic

  • @유해갑
    @유해갑 11 месяцев назад +1

    Thank you. Sir.

  • @RajaBhai-wx2pu
    @RajaBhai-wx2pu 8 месяцев назад

    Excellent

  • @rubensalphajunior
    @rubensalphajunior Год назад +1

    Amazing!

  • @magdiragheb8087
    @magdiragheb8087 4 месяца назад

    x^2-x^3=13
    x^3-x^2+12=0
    factors of 12:±2 , ±3 , ±1
    -2 satisfy the equation -> x+2 factor
    (x+2)(x^2-3x+6)=0
    x=-2 , (3/2)±sqrt(15)i/2

  • @harneethguttikonda5451
    @harneethguttikonda5451 13 дней назад

    I solved this in 5 seconds in my mind with this simple logic:
    "If x is positive, the RHS should be negative, so x must negative so that x^3 is also negative, and the ( - ) in front of x^3 makes it positive again, so it adds to x^2." Then I just thought of simple numbers, and 2, seemed to be a good |x| value, and so, the answer with the logic is: -2.

    • @onlineMathsTV
      @onlineMathsTV  11 дней назад

      You the best, sir.

    • @harneethguttikonda5451
      @harneethguttikonda5451 11 дней назад

      @@onlineMathsTV Thanks 😀. My logic works, but your method is really useful if the answer was not as simple. Because it was just -2, I could guess, but if it was a more difficult value, your method is very useful.

  • @BrittyBrat7
    @BrittyBrat7 8 месяцев назад

    That was very nice.

  • @demletesfa5574
    @demletesfa5574 4 месяца назад +1

    Let's solve the equation X2−X3=12X^2 - X^3 = 12X2−X3=12.
    Rearrange the equation to standard polynomial form:
    −X3+X2−12=0-X^3 + X^2 - 12 = 0−X3+X2−12=0
    Multiply through by −1-1−1 to simplify:
    X3−X2+12=0X^3 - X^2 + 12 = 0X3−X2+12=0
    This is a cubic equation, and we need to find the roots. Let's try to find the roots using the Rational Root Theorem, which suggests that any rational solution, in the form of pq\frac{p}{q}qp, is a factor of the constant term divided by a factor of the leading coefficient.
    Here, the constant term is 12 and the leading coefficient is 1, so the possible rational roots are the factors of 12:
    ±1,±2,±3,±4,±6,±12\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12±1,±2,±3,±4,±6,±12
    We can test these possible roots by substitution to see if they satisfy the equation.
    Testing X=1X = 1X=1:
    13−12+12=1−1+12=12≠01^3 - 1^2 + 12 = 1 - 1 + 12 = 12
    eq 013−12+12=1−1+12=12=0
    Testing X=−1X = -1X=−1:
    (−1)3−(−1)2+12=−1−1+12=10≠0(-1)^3 - (-1)^2 + 12 = -1 - 1 + 12 = 10
    eq 0(−1)3−(−1)2+12=−1−1+12=10=0
    Testing X=2X = 2X=2:
    23−22+12=8−4+12=16≠02^3 - 2^2 + 12 = 8 - 4 + 12 = 16
    eq 023−22+12=8−4+12=16=0
    Testing X=−2X = -2X=−2:
    (−2)3−(−2)2+12=−8−4+12=0(-2)^3 - (-2)^2 + 12 = -8 - 4 + 12 = 0(−2)3−(−2)2+12=−8−4+12=0
    So, X=−2X = -2X=−2 is a root.
    Now, we can factor (X+2)(X + 2)(X+2) out of the cubic polynomial:
    X3−X2+12=(X+2)(X2+aX+b)X^3 - X^2 + 12 = (X + 2)(X^2 + aX + b)X3−X2+12=(X+2)(X2+aX+b)
    To find aaa and bbb, we can perform polynomial division or use synthetic division. After factoring, we get:
    (X+2)(X2−3X+6)=0(X + 2)(X^2 - 3X + 6) = 0(X+2)(X2−3X+6)=0
    Now we solve the quadratic equation X2−3X+6=0X^2 - 3X + 6 = 0X2−3X+6=0 using the quadratic formula:
    X=−b±b2−4ac2aX = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}X=2a−b±b2−4ac
    Here, a=1a = 1a=1, b=−3b = -3b=−3, and c=6c = 6c=6:
    X=3±(−3)2−4⋅1⋅62⋅1X = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot 6}}{2 \cdot 1}X=2⋅13±(−3)2−4⋅1⋅6 X=3±9−242X = \frac{3 \pm \sqrt{9 - 24}}{2}X=23±9−24 X=3±−152X = \frac{3 \pm \sqrt{-15}}{2}X=23±−15 X=3±i152X = \frac{3 \pm i\sqrt{15}}{2}X=23±i15
    So, the solutions are:
    X=−2,X=3+i152,X=3−i152X = -2, \quad X = \frac{3 + i\sqrt{15}}{2}, \quad X = \frac{3 - i\sqrt{15}}{2}X=−2,X=23+i15,X=23−i15
    4o

  • @Denz4real
    @Denz4real 3 месяца назад

    Good job bro

  • @morsilimohamed9354
    @morsilimohamed9354 8 месяцев назад

    Good job

  • @benadethayunus3797
    @benadethayunus3797 3 месяца назад

    Thanks,👌👍👍👏👏💥💥

  • @guitarbap
    @guitarbap 10 месяцев назад

    I think this way :
    1. X must be negative, because if X positive, X^2 < X^3 => X^2 - X^3 never equals 12.
    2. Negative but range ? X should be from 0 to -3 (I only consider integer), because -X^3 must < 12 itself to carry X^2.
    3. Make a try with integer and easily find X = -2. Base on this to form the other equation to find another 2 X.

  • @sadiqueshaibu8638
    @sadiqueshaibu8638 11 месяцев назад +1

    Marvelous.

  • @odinakammadu5020
    @odinakammadu5020 2 месяца назад

    Keep it up

  • @N_Kumar26
    @N_Kumar26 4 месяца назад

    𝑥^2−𝑥^3=12
    𝑥^2 (1−𝑥)=12
    Factorization of 12 = 2x2x3
    =(-2)x(-2)x3
    (−2)^2 [1−(−2)]=12
    Hence x= -2

  • @texasattexas
    @texasattexas 7 месяцев назад

    J'ai eu de la chance de trouver plus rapidement ! On remarque que 12 = 3 x 4. Écrivons l'expression x**2 - x**3 = x**2 * (1 - x). Supposons xx*2 = 4 et (1 - x ) = 1 - (-2) , du coup on a bien x = -2 comme solution. (NB '**' signifie ici puissance d'un nombre et * multiplication)

  • @مجیدزمانی-ط7د
    @مجیدزمانی-ط7د 10 месяцев назад

    It was great, well done

    • @onlineMathsTV
      @onlineMathsTV  10 месяцев назад

      Thanks for watching and encouraging Onlinemathstv with your words sir.
      Much love from us here...💖💖❤️❤️

  • @scottsherman6889
    @scottsherman6889 Месяц назад

    Wow! Factor: x2(1-x)=12. x2 must be 4, and 1-x must be 3. If x=-2, it works!

  • @user-gr5tx6rd4h
    @user-gr5tx6rd4h 8 месяцев назад

    I solved this in 5 seconds thus: 4 + 8 = 12, 4 - (-8) = 12, x = -2.
    (If only real roots are wanted, long division shows there are no other)

  • @SuleimanIbrahim-vc4se
    @SuleimanIbrahim-vc4se 7 месяцев назад

    Fantastic

  • @pranjalrathore4804
    @pranjalrathore4804 Год назад +2

    X is -2
    X^2(1-x) =12
    Since rhs is +tive meaning lhs is also positive
    Hence 1-x is positve which means x is a negative number
    Now by put -1, then -2 we get our answer

  • @xgx899
    @xgx899 6 месяцев назад +1

    Once you guess that $x=-2$ is a root, set x^3-x^2-+12=(x+2)(x^2+ax+6) and determine that a=-3 from the fact that there is no linear term. Then apply quadratic equation formula. Why does this need so many words and equations?

  • @dhairyasakhare6497
    @dhairyasakhare6497 9 месяцев назад

    *Actually it was more simple than you did*
    Sir, we can also solve it by factorising 12 to 4×3
    Also factorising x²-x³ into x²(x-1)
    Now,x²(1-x)=4×3
    =>x-1=3
    =>-x=2 so, x=-2
    And,(-2)²=4 tooo
    But, still there was soo much to learn in this video thanks for that 🙏🙏

  • @flyingsani5
    @flyingsani5 15 дней назад

    x² - x³ = 12
    x²(1 - x) = 12
    x²(1-x) = 4*3
    x²(1-x) = 2²*3
    i) x² = 2²일 때, x = 2, -2
    ii) 1-x = 3일 때, x = -2
    따라서 x=-2

  • @Divinesview-h7o
    @Divinesview-h7o 7 месяцев назад

    Thanks very much sir

    • @onlineMathsTV
      @onlineMathsTV  6 месяцев назад

      Smiles....a million thanks to you my dear good friend and brother.
      Thanks for being there for us.
      Much love 💕💕❤️💖

  • @sarakamali1053
    @sarakamali1053 Год назад +1

    X^2(1-x)=4*3 so x^ 2= 4and 1-x=3 so x=-2 by substituting x=-2 the result will come out

  • @Yllnora1
    @Yllnora1 Год назад

    Bravo, big Bravo

  • @claudiohermeslima
    @claudiohermeslima 9 месяцев назад +1

    *You are the Best!*

  • @GMetry
    @GMetry 11 месяцев назад

    X^2 - X^3 = 12
    X^2(1-x) = 2^2*(1-(-2)) , or X^2(1-x) =(-2)^2*(1-(-2))
    If we compare left and right sides of equations, It is obvious, that
    true version of equation is X^2(1-x) = (-2)^2*(1-(-2))
    That is x = -2

  • @ThanhVu-cn5uh
    @ThanhVu-cn5uh 3 месяца назад

    (x+2)(3x-x^2+6)=0
    x+2=0 or 3x-x^2+6=0
    -> 3x-x^2+6=0 -> (x-3/2)^2+15/4 >0 -> x=-2

  • @КатяРыбакова-ш2д
    @КатяРыбакова-ш2д 2 месяца назад

    x=-2; (3-V15*i)/2; (3+V15*i)/2. Найдём корень -2 по схеме Горнера и придём к уравнению x^2 + 4x +12 =0.