Can you find area of the Purple shaded region? | (Semicircle) |

Поделиться
HTML-код
  • Опубликовано: 13 янв 2025

Комментарии • 25

  • @alanthayer8797
    @alanthayer8797 Месяц назад +2

    Nice Work! This Equation needed Tan functions to estimate !! THANKS for your Daily videos again Sir !

    • @PreMath
      @PreMath  29 дней назад

      You are very welcome!
      Thanks for watching! ❤️

    • @jpsalesable
      @jpsalesable 8 дней назад

      Obrigado espetacular muito bom não sei inglês mas compreendo oque vc faz!

  • @marioalb9726
    @marioalb9726 Месяц назад +2

    Área of semicircle:
    A₁ = ½πR² = π cm² --> R = √2 cm
    Pytagorean theorem:
    x² + (2R)² = (2x+x)²
    9x² - x² = 4R²
    x²= 4R²/8= ½R²= ½.2= 1 --> x=1cm
    Área of trapezoid :
    A₂ = 2R.x + ½.2R.x = 3.R.x = 3*√2*1
    A₂ = 3√2 cm²
    Shaded Area :
    A = A₂ - A₁ = 3√2 - π
    A = 1,101 cm² ( Solved √ )

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq Месяц назад +1

    As soon as we know x =1 unit and r =√2 units
    Semiperimeter Of DPOA=(2+√2) units
    & that of CPOB =(√2+1) unit
    we may use Brahmagupta formula to find the area of Trapezium
    =area of cyclic quadrilateral DPOA + area of cyclic quadrilateral CPOB
    = √[(2+√2-2)(2+√2-2)(2+√2-√2)(2+√2-√2)]
    +√[(√2+1-1)(√2+1-1)(√2+1-√2)(√2+1-√2)]
    =2√2+√2=3√2
    Area of shaded portion
    = (3√2 -π) sq units

  • @prossvay8744
    @prossvay8744 Месяц назад +1

    Purple shaded area=1/2(1+2)(2√2)-π=3√2-π square units.❤❤❤

  • @ChuzzleFriends
    @ChuzzleFriends Месяц назад

    A = (πr²)/2
    π = (πr²)/2
    2π = πr²
    r² = 2
    r = √2
    So, AB = AO + BO = √2 + √2 = 2√2.
    By the Two-Tangent Theorem, AD = DP = 2x & BC = CP = x.
    So, CD = CP + DP = x + 2x = 3x.
    Draw a segment thru point C and a point N on base AD such that it is perpendicular to the bases of trapezoid ABCD. This is the height of the trapezoid and forms a rectangle ABCN and a right △CND. Therefore, by the Parallelogram Opposite Sides Theorem, AN = BC = x & AB = CN = 2√2.
    Thus, DN = AD - AN = 2x - x = x. Apply the Pythagorean Theorem on △CND.
    a² + b² = c²
    x² + (2√2)² = (3x)²
    x² + 8 = 9x²
    8x² = 8
    x² = 1
    x = 1
    So, AD = 2 & BC = 1.
    Find the area of trapezoid ABCD.
    A = [(a + b)/2](h)
    = 1/2 * (1 + 2) * 2√2
    = √2 * 3
    = 3√2
    Purple Region Area = Trapezoid ABCD Area - Semicircle Area
    = 3√2 - π
    So, the area of the purple shaded region is 3√2 - π square units (exact), or about 1.10 square units (approximation).

  • @AmirgabYT2185
    @AmirgabYT2185 Месяц назад +3

    S=3√2-π≈1,105≈1,11

  • @quigonkenny
    @quigonkenny 29 дней назад

    Semicircle O:
    A = πr²/2
    π = πr²/2
    r² = 2
    r = √2
    As CP and BC are tangents to semicircle O that intersect at C, CP = BC = x. As PF and DA are tangents to semicircle O that intersect at D, PD = DA = 2x.
    CD = CP + PD = x + 2x = 3x
    Draw CF, where F is the point on DA where CF is parallel to AB and perpendicular to BC and DA. As DA = 2x and FA = BC = x, DF = 2x-x = x. CF = AB = 2r = 2√2.
    Triangle ∆DFC:
    DF² + FC² = CD²
    x² + (2√2)² = (3x)²
    x² + 8 = 9x²
    8x² = 8
    x² = 8/8 = 1
    x = 1
    The shaded area will be equal to the area of trapezoid ABCD minus the area of semicircle O.
    Purple shaded area:
    A = h(a+b)/2 - πr²/2
    A = 2√2(1+2)/2 - π
    A = 3√2 - π ≈ 1.101 sq units

  • @MrPaulc222
    @MrPaulc222 Месяц назад

    ((3x)/2 )*2r - pi
    3xr - pi
    A full circle would have area 2pi, indicating that r = sqrt(2).
    3*sqrt(2)*x - pi
    Find x:
    DC = x + 2x = 3x
    CM = 2*sqrt(2) where M is AD's midpoint.
    Right triangle:
    x^2 + (2*sqrt(2))^2 = (3x)^2
    x^2 + 8 = 9x^2
    x = 1
    Back to my first line: (3/2)*(2*sqrt(2)) - pi
    = (3/2)*2*sqrt(2) - pi = 3*sqrt(2) - pi = 1.101un^2 (rounded).

    • @MarieAnne.
      @MarieAnne. 29 дней назад

      Nice, but why go back to first line once you find x when you have a simplified formula for area on fourth line?

  • @marcgriselhubert3915
    @marcgriselhubert3915 Месяц назад

    Be R the radius of the semi circle. We have (Pi.(R^2))/2 = Pi, so R = sqrt(2). We now use an orthonormal center O and first axis (OB)
    We have C(sqrt(2); x) and D(-sqrt(2); 2.x), then VectorCD(-2.sqrt(2); a). The equation of (CD) is (X -sqrt(2)).(x) - (Y - a).(-2.sqrt(2)) = 0
    or x.X +2.sqrt(2).Y -3.x.sqrt(2) = 0. The distance from O to (CD) is abs(x.0 + 2.sqrt(2).0 -3.x.sqrt(2))/sqrt(x^2 + 8) = (3.x.sqrt(2))/sqrt(x^2 + 8)
    This distance is also R = sqrt(2), so we square and obtain: 18.(x^2) = 2.(x^2) +8), which gives that x^2 = 1 and x = 1
    The area of the trapezoïd is then AB.((AD + BC)/2) = (2.sqrt(2).((1 + 2)/2) = 3.sqrt(2) anf finally the purple area is 3.sqrt(2) - Pi.

  • @jamestalbott4499
    @jamestalbott4499 29 дней назад

    Thank you!

  • @cyruschang1904
    @cyruschang1904 29 дней назад

    x^2 + r^2 + 4x^2 + r^2 = (x + 2x)^2
    5 x^2 + 2r^2 = 9x^2
    2x^2 = r^2 = 2
    x = 1, r = √2
    Purple area = (2x + x)(2r)/2 - π = 3x(2r)/2 - π = 3√2 - π

  • @himo3485
    @himo3485 29 дней назад

    AO=BO=r DP=2x CP=x DC=2x+x=3x
    r*r*π*1/2=π r=√2 AB=√2+√2=2√2
    (2x-x)²+(2√2)²=(3x)² x²+8=9x² 8x²=8 x²=1 x=1
    Purple shaded area = (2+1)*2√2*1/2 - π = 3√2 - π

  • @wackojacko3962
    @wackojacko3962 Месяц назад

    @ 5:06 , that's the "kicker" too solving. 🤔 ... right, dropped that perpendicular EC like Wile E. Coyote drops an anvil too snuff The Roadrunner. 😊

  • @alexundre8745
    @alexundre8745 Месяц назад +1

    Bom dia Mestre

  • @sorourhashemi3249
    @sorourhashemi3249 29 дней назад

    Thanks easy❤

  • @hustledude
    @hustledude 16 дней назад

    You make every statement sound like a question

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 28 дней назад

    {2x+2x ➖ }+{x+x ➖ }={2x^2+x^2}=2x^4 180°/2x^4=90x^4 3^30x^4 3^10x^4 3^2^5x^5 3^2^1x^2^2 3^1^1x^1^2 3x^2 (x ➖ 3pix+2).

  • @unknownidentity2846
    @unknownidentity2846 Месяц назад

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    First of all we calculate the radius of the semicircle:
    A = πr²/2
    π = πr²/2
    2 = r²
    ⇒ r = √2
    According to the two tangent theorem we know:
    CP = BC = x
    DP = AD = 2x
    Now let's add point E on AD such that ABCE is a rectangle. In this case CDE is a right triangle and we can apply the Pythagorean theorem:
    CE² + DE² = CD²
    AB² + (AD − AE)² = (CP + DP)²
    (OA + OB)² + (AD − BC)² = (CP + DP)²
    (r + r)² + (2x − x)² = (x + 2x)²
    (2r)² + x² = (3x)²
    4r² + x² = 9x²
    4r² = 8x²
    r²/2 = x²
    ⇒ x = r/√2 = √2/√2 = 1
    Now we are able to calculate the area of the purple region:
    A(purple) = A(ABCD) − A(semicircle) = (1/2)*(BC + AD)*AB − π = (1/2)*(x + 2x)*(2r) − π = 3xr − π = 3√2 − π ≈ 1.101
    Best regards from Germany

  • @Birol731
    @Birol731 Месяц назад

    My way of solution ▶
    First, we draw the radius r, which is equal to [OP] :
    [OP]= r
    Let's consider the Deltoid OBCP,
    the two triangles in this Deltoid are equal to each other:
    ΔOBC= ΔOCP

    [OB]= [OP]= r
    [OC]= [CO] the hypotenuse of both triangles

    [BC]= [CP]
    [CP]= x
    b) Let's consider the Deltoid AOPD,
    the two triangles in this Deltoid are equal to each other:
    ΔAOD= ΔOPD

    [AO]= [OP]= r
    [DO]= [OD] the hypotenuse of both triangles

    [DA]= [PD]
    [PD]= 2x
    c) Asemicircle= π
    π= πr²/2
    r²= 2
    r= √2
    d) Let's consider the right triangle ΔKCD
    [DK]= 2x -x
    [DK]= x
    [KC]= 2r
    [KC]= 2√2
    [CD]= x+2x
    [CD]= 3x
    By applying the Pythagorean theorem we can write:
    [DK]² + [KC]²= [CD]²
    x²+ (2√2)²= (3x)²
    8x²= 8
    x²= 1
    x= 1
    e)
    Apurple= A(ABCD) - Asemicircle
    A(ABCD)= (2x+x)*2r/2
    A(ABCD)= 3*√2

    Apurple= 3√2 - π
    Apurple ≈ 1,10 square units

  • @sergioaiex3966
    @sergioaiex3966 Месяц назад

    Solution:
    Let's calculate the radius and the diameter
    Semicircle Area = θ/360° π r²
    π = 180°/360° π r²
    π/π = 1/2 r²
    1 = 1/2 r²
    r² = 2
    r = √2
    d = 2√2
    Let's suppose a point K in the segment AD, such that, the segment KC is parallel to AB. Therefore, we will project a right triangle CDK, and we will calculate its 3 sides
    AD = DP = 2x
    BC = CP = x
    CD = DP + CP = 2x + x
    CD = 3x
    AK = BC = x
    KD = AD - AK
    KD = 2x - x
    KD = x
    KC = AB = 2√2
    Let's applying the Pythagorean Theorem to calculate "x"
    KC² + KD² = CD²
    (2√2)² + (x)² = (3x)²
    8 + x² = 9x²
    8x² = 8
    x² = 1
    x = 1
    Purple Shaded Area (PSA) = Trapezoid Area - Semicircle Area ... ¹
    Trapezoid Area = ½ h (a + b)
    Trapezoid Area = ½ 2√2 (2 + 1)
    Trapezoid Area = √2 (3)
    Trapezoid Area = 3√2 ... ²
    Replacing ² in equation ¹
    PSA = 3√2 - π square units ✅
    PSA ≈ 1,1010 square units ✅

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 29 дней назад

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) AD = DP = 2X
    02) BC = CP = X
    03) AB = 2sqrt(2)
    04) CD = 3X
    05) 9X^2 = 8 + X^2
    06) 8X^2 = 8 ; X ^2 = 1 ; X = 1
    07) Trapezoid [ABCD] Area = (3sqrt(2)) sq un
    08) Purple Shaded Area = [(3sqrt(2)) - Pi] sq un
    09) PSA ~ 1,10 sq un
    Thus,
    OUR BEST ANSWER IS :
    Purple Shaded Area equal to approx. 1,10 Square Units - Exact Form = [(3sqrt(2)) - Pi] Square Units.