이전 무한에 대한 강의도 그렇고 고등학교과정에서 수열의 극한을 가까워진다라는 애매한 표현을 쓰는것은 정의를 내릴때는 유의 하셔야합니다. 이런설명이 1.9999...=2 이런것을 이해못하게 만드는겁니다... 말그대로 극한값은 그 값이지 가까이 가는 값이라고 하면 안됩니다. 그 수렴하는 값에 도달하는것이지 계속가고 있다라는 표현은 굳이 해석학이나 엡실론델타를 설명하지 않더라도 직관으로 잘못됬다는걸 아실겁니다. 다른강의에서도 무한에서 1=2와 관련된 강의도 그렇고 이 설명도 주의하셔야할거 같습니다.
애초에 애들한테 해석학전반을 가르치는건 오바지만 엡실론델타의 대략적인 개념정도는 설명해도 괜찮다고 보는데 그냥 '실수의 갯수는 무수히 많지? 그러면 여기서 너희들이 아주 작은 간격을 잡는다고 생각해봐 그러면 그 간격보다 더 짧은 간격이 존재할까? 그렇지 존재하지 그러니까 애초에 가장 짧은 간격이란 존재하지 않는거야'이정도로 설명만 해줘도 대략적인 이해는 할 수 있고 극한값이 하나의 값이라는걸 설명할수 있음 저런식으로 고등과정에서 극한값은 다가가는값이다 이런식으로 설명해버리니 1.999999...은 극한값이니 정확히 2인것은 아니고 한없이 2에 가까워지는(다가가는)값이다 이딴 개소리가 나오는 거지
05:30 네? q는 직교좌표에서 중심이 (0,0)인 원의 방정식이고, p는 그냥 x=0이고 y=0이란 단순한 명제니까, 둘이 동치라고 할수는 없지 않나요? q가 더 많은 정보를 가지고 있는걸요? p는 q에 속한다면 몰라도... 제가 수학과는 안나왔지만, 딱 봐도 이상해 보여서 여쭤봐요 ㅋㅋ;
머리가 반짝해지는 설명 감사합니다
어렵게만 설명하는 다른강의들보다 머리에 쏙쏙 들어와서 좋아요
설명을 재밌게 잘 해주시네요~
가까이 간다는 표현은 현대 수학에서 볼 때 틀린 개념이라고 하는데... 그리고 극한값과 수렴하는 값과의 사이(예를 들면 극한값1과 정수1)에는 그 차이가 없다고 합니다. 수정하셔야 할 뜻...
고등수학에서는 가까이간다로 가르칩니다 교육과정상
이전 무한에 대한 강의도 그렇고 고등학교과정에서 수열의 극한을 가까워진다라는 애매한 표현을 쓰는것은 정의를 내릴때는 유의 하셔야합니다. 이런설명이 1.9999...=2 이런것을 이해못하게 만드는겁니다... 말그대로 극한값은 그 값이지 가까이 가는 값이라고 하면 안됩니다. 그 수렴하는 값에 도달하는것이지 계속가고 있다라는 표현은 굳이 해석학이나 엡실론델타를 설명하지 않더라도 직관으로 잘못됬다는걸 아실겁니다. 다른강의에서도 무한에서 1=2와 관련된 강의도 그렇고 이 설명도 주의하셔야할거 같습니다.
교과서에서 쓰는 표현대로 설명하신건데 뭐. 고등학교 과정에서는 이렇게만 알아도 충분하죠.
그럼 애들 상대로 뭘 얼마나 엄밀하게 하란건지.....
쉽게 설명해야죠 고등수학에서 해석학 전반을 강의할수는 없으니
ㅈㄹ 도달하지 않습니다... 수열이나 함수의 극한에서 극한은 그 함숫값의 목적지이지 함숫값이=극한값이 아닙니다... ㅂㅅ 장애인아
애초에 애들한테 해석학전반을 가르치는건 오바지만 엡실론델타의 대략적인 개념정도는 설명해도 괜찮다고 보는데 그냥 '실수의 갯수는 무수히 많지? 그러면 여기서 너희들이 아주 작은 간격을 잡는다고 생각해봐 그러면 그 간격보다 더 짧은 간격이 존재할까? 그렇지 존재하지 그러니까 애초에 가장 짧은 간격이란 존재하지 않는거야'이정도로 설명만 해줘도 대략적인 이해는 할 수 있고 극한값이 하나의 값이라는걸 설명할수 있음 저런식으로 고등과정에서 극한값은 다가가는값이다 이런식으로 설명해버리니 1.999999...은 극한값이니 정확히 2인것은 아니고 한없이 2에 가까워지는(다가가는)값이다 이딴 개소리가 나오는 거지
머리카락도 0에 수렴하네요... 지금 계속 0에 가까워지고있으니...
극한은 가까이 가는게 아니라 곧 그 값인건데요... 정 반대로 말씀하셨네요. 한없이 가까이 간다라고들 많이 하는데 그걸로 틀린 경우는 1, 1, 1, 1, 1, ... 이 수열은 1이 아니라 1로 가까이 가는겁니까? 그냥 1인거죠.
05:30 네? q는 직교좌표에서 중심이 (0,0)인 원의 방정식이고, p는 그냥 x=0이고 y=0이란 단순한 명제니까, 둘이 동치라고 할수는 없지 않나요?
q가 더 많은 정보를 가지고 있는걸요?
p는 q에 속한다면 몰라도...
제가 수학과는 안나왔지만, 딱 봐도 이상해 보여서 여쭤봐요 ㅋㅋ;
실수로 한정하면 맞음.
복소수 까지 확장하면 아니지만.