✨ 100만뷰 기념 이벤트가➚ 왔어요~✨ 정승제의 50일 수학 '수학 문제 논란' 콘텐츠 100만 뷰 돌파 기념으로 총 56분께 선물을 드립니다!🎁🎊🎁 ⭐ 참여 방법 1. EBSi 고교강의 채널 (www.youtube.com/@EBS_i) 구독하기🎈 2. 해당 게시물 하단에 댓글로 정승제의 50일 수학 콘텐츠 한 줄 평 후기 남기기✍🏻 ⭐ 이벤트 경품 - 정승제의 50일 수학 e-book 📚(50명) - 스타벅스 아메리카노 쿠폰 ☕ (4명) - 후라이드 치킨 쿠폰 🍗 (2명) ⭐ 참여 기간 : 8/8(목)~8/18(일) ⭐ 당첨자 발표 : 8.19(월) *당첨자 개별 안내 예정 ⭐ 유의사항 1. 이벤트 당첨자 선정 및 경품 전달을 위해 개인정보를 요청할 수 있습니다. 2. 이벤트 참여기간 내에만 응모가 가능합니다. 3. 정확하지 않은 개인정보의 문제로 인한 상품 미수령 및 반송 시 재발송되지 않습니다. 4. 본 이벤트는 해외 배송이 불가합니다. (당첨 시 한국 내 주소 필요) 5. 상기 이벤트 내용, 경품, 일정 등은 당사 사정에 의해 변경될 수 있습니다.
@sibisi-ir5zj 하나 더 덧붙이자면 '수학은 답이 하나인 절대진리 학문'이라는 은연 중에 갖는 우리들의 고정관념도 한 몫하는 것 같아요. 그러니 이거 아니면 저거여야 한다는 강박관념이랄까요. 결국 중요한 것은 그것이 '문제'인 이상출제자의 의도와 기준인 것을 말이죠.
@sibisi-ir5zj 그건 '취향' 의 문제가 아닙니다. 그걸 받아들이지 않는다면 지구에서 수학을 할 게 아니라 어디 저 알파센타우리 같은데 가서 우리와는 다른 '공리' 를 가지는 별에 가서 수학을 배워야 합니다. 이 '지구' 라는 별에서 공리는 승재샘이 말한 내용이고, 그건 '반드시' 받아들여야 하는 부분입니다.
@@곽재형-c8d 어떻게 계산해서 두개의 답이 나온지 알겠으나 2:30 에서 정승제쌤께서 말씀하셨듯이 사칙연산에서 약속을 한 부분입니다. (미국 수학 학회에서도 그렇게 정하기도 했고요) 개인적으로 다같이 약속을 정했는데 그것을 어겨 비합리적인 답을 제시했다는것은 틀린게 아닐까 싶어요.
설명이 중요한 게 아니라고 봐요. 설명은 괄호항부터 처리하는 이들이 타인에게 설명할 수 있어야 하는 부분아 것이고, 중요한 건 수학(저건 수학도 아닌 연산이지만)이란 정의가 중요하고 그에 따라 답이 다를 수 있다는 게 지금 정 쌤의 요지입니다. 즉 지금 댓글창에서 어느 답이 맞았다고 말하는 사람들은 이미 답정너의 자세로 이 영상을 봤다는 거. 정승제는 끝까지 답을 규정짓지 않아요. 즉 그 문제를 주관하는 곳이 인정하는 게 답이라는 게 정확한 입장이겠네요.
@@이아-g6m 근데 정승제가 자기는 답을 규정하지 않겠다고 말을 했죠. 풀이가 아니라 풀이 외적인 이야기들이 핵심인데, 풀이에 꽂혀버리면 정 쌤은 13분 그냥 날린거죠. 이 영상을 끝까지 봐야 하는 이유는 정승제라는 유명 수학강사가 저걸 어떻게 푸느냐가 아니라 왜 논란이 되어선 안 된다고 하는지가 중요하기 때문입니다. 만약 그 이유를 '답이 2라서'라고 말한다면 죄송하지만 영상의 내용을 흘려들으신 게 아닐까요. 그렇기에 영상의 13분을 스킵없이 다시금 보시는 걸 추천드려요.
사람들이 목숨 걸고 있는 이유는 애매하게 알고 있으면서 검색 안 해보고 자기 주장만을 고집하는 상대방이 똑같은 입장의 자신이 보기에 한심해보여서임. 하지만 승제쌤이 흥분한 이유는 중학교 때 알려주는 간단한 개념을 망각하고 하등 쓸모없는 멍청한 싸움을 하고 있는 그들한테 화가 나서임. 넓게 보셈
이건 논점일탈의 오류입니다. (2*9+2*3)=2*(9+3)인건 당연히 참이고 여기에 반박할 사람은 없죠. 하지만 여기서 문제시 되는 건 48/2(9+3)라는 수식을 48/2*(9+3)으로 볼 것이냐, 48/{2*(9+3)}으로 볼 것이냐 입니다. 즉, 이 수식에서 괄호가 포함된 계산을 24*(9+3)으로 풀어야 하는가, 2*(9+3)으로 풀어야 하는가? 이것이 주된 논쟁이지, 2*(9+3) = (2*9+2*3)이 맞냐 아니냐가 주된 논쟁이 아니라는 겁니다.
이렇게 생긴 과일을 우리는 '사과'라고 부르기로 약속했어요. 하는데 누군가 '나는 그 약속에 동의할 수 없어요. 나는 그 과일을 삼과라고 하겠어요' 라고 하면, 그래 우리는 다 사과라고 할테니 너 혼자 삼과라고 해라 하는 수밖에... 그런 사람을 설득하려고 노력해봤자 무슨 소용이 있겠나요. 시간과 에너지만 낭비하는거지.. 저 수학식의 답을 288이라고 하는 사람이 있다면 구태여 설득하려 하지 말고 그냥 너혼자 그렇게 하세요 라고 말하는게 나를 위해서 더 좋은 일입니다.
이렇게 생긴 과일은 사과임? apple임? 사과라 부르자 하면 사과고 apple라 부르자 하면 apple임 정의를 어떻게 하냐에 따라 다르다는 예시는 이게 더 맞음 수학이 역사도 아니고 다수론을 따름? 자 여기서 문제 1은3이고 2는4이다 1+2=?의 답은? 님이 생각하는 답은 3임? 7임?
@@이주희-s4j 과학처럼 어떤 현상으로 정해지는게 아니라 수학은 약속이니 다수론을 따르는게 맞죠.. 사과를 미국에선 apple이라고 부르는 이유는 그 나라에서 다수가 apple이라고 부르기로 했기 때문이고 우리나라에선 다수가 사과라고 부르기로 했기 때문이구요. 수학의 규칙도 "다수"의 수학자가 동의하거나 사용하면서 만들어진것들이고 수학도 역사가 맞습니다.
정승제 선생님께서 하신 말씀처럼 언제나 개념은 그냥 의미 없이 외울께 아니라 이해하면서 스스로 설명하는 연습을 하면서 수학 실력을 키우는게 수학의 본질이고 수학은 언제나 기초가 안잡히면 나중에 무너지기 때문에 언제나 기본이 중요하다는 말씀을 하고 싶으신것 같고 EBSi들으면서 저는 수포자 였는데 정승제쌤을 만나고 나서 수학이 한결 괜찮아 졌고 50일 수학으로 저의 공백을 채울수 있어서 좋았던것 같다 정승제 선생님께서는 우리나라에 수포자 없애기 위해서 노력하십니다 그의 힘입어 저는 정승제 선생님 제자답게 항상 포기하지 않고 긍정적인 마음으로 하나하나 채워 나가다 보면 그 끝이 있으리라고 민ㄷ어 의심치 않으니 정승제 선생님을 믿고 나아가 보겠습니다 정승제 선생님,조교쌤,EBSi 화이팅
아니!!!!! 너무 좋잖아요!!! 진짜 너무 감사합니다 수학 쉽게 가르쳐 주셔서요!!!!! 저도 가르치는 사람인데(?) 아이들에게 잘 가르쳐 줄 수 있어서 넘 행복해요💓💓💓 사랑합니다(?) ㅋㅋㅋㅋㅋㅋㅋㅋ 아이들이 제 수업 듣고 수학 재밋다고 할 때가 제일 행복한데요 그중에 8할은 진짜 정승제선생님 덕분입니다💓💓💓 항상 행복하세용~!~!~!
결국 수식이란 우리가 어떤 문제를 계산하기 위해 긴 서술을 기호로 간단하게 표기한 것 아닐까요? 우리가 구하고자 하는 값이 뭐냐가 중요한 것 같습니다. 48÷2(9+3) = 식량48개를 2개의팀(팀당 9명의 여자와 3명의 남자로 이루어짐)에게 나눠준다고 하면 몇개씩 줄수 있는가? 48÷2×(9+3) = 1명당 식량48개를 주려 했지만 부족해 절반씩만 주기로 했다.9명의 여자와 3명의 남자에게 식량을 준다면 식량 몇개가 필요한가?
중1수학 곱셈기호는 수,문자의 결합시 생략가능 예)3×a=3a a×b=ab 단,수의 경우는 ㆍ을 찍는다 예)2×3=2ㆍ3 따라서 위 식은 오류입니다 따질 필요가 없지요 다만 분배법칙 표기법으로 문자로만 구성된 a(b+c)은 가능하나 수만으로 표기하고자 할때는 꼭ㆍ을 찍어서 2ㆍ(9+3)으로 한후 중괄호{ }로 묶고 또한 좌측선연산 규칙에 따르고자하면 2×(9+3)으로 표기하고 48÷2를 먼저 계산
여러가지 자료들좀 찾아보고 왔는데 정승제님 말이 완벽하게 맞는듯 2가 무조건 맞다 ->틀린말 288이 무조건 맞다 ->틀린말 괄호 밖의 수를 먼저 곱해야 한다는 규칙은 어디에도 없음 다만 현대수학에서 문자가 포함된 식의 경우 곱셈기호의 생략은 결합된 것으로 본다는 규칙이 있기에 2로 보는것이 조금 더 합리적이다 라고 보는거임 다시한번 말하지만 괄호가 포함된 식에서 곱셈기호의 생략을 결합된 것으로 간주한다는 규칙은 없음
선생님 영상 보고 조금 반론을 제시하고 싶어서 댓글 남깁니다. 영상 맨 처음에 말씀하신, 학생들이 '안타깝게도' 계속해서 암기한다는 연산 순서 규칙을 적용해서 순서대로 계산하면 답이 288이 나오고, 선생님께서 영상 내내 설명하신 숫자들 간의 생략되어 있는 곱셈이 더 높은 결합력을 가진다는 규칙을 적용해서 계산하면 답이 2가 나옵니다. 저는 선생님께서 설명하신 숫자들 간의 생략되어 있는 곱셈이 더 높은 결합력을 가진다는 그런 규칙을 처음 들어봅니다. 선생님께서도 영상에서 세상 어느 책에도 그런 내용은 없다고 말씀하셨고요. 그래도 영상에서 말씀하신 대로 그 규칙은 분명히 합리적인 규칙이라고 생각합니다. 시각적으로도 2(9+3)이 더 긴밀하게 묶여있는 것처럼 보이니까요. 하지만, 학생들이 암기한다는 그 연산 순서 규칙이 왜 존재하는지를 생각해봅시다. 연산 순서는 모든 사람들이 모호하게 받아들일 수 있는 표현을 동일하게 해석하도록 보장하기 위해 존재합니다. 따라서 48÷2(9+3)을 계산할 때 숫자들 간의 생략된 곱셈이 더 높은 결합력을 갖는다는 교과서에 쓰여져 있지 않은 그런 규칙을 적용해버리면, 연산 순서 규칙은 존재 목적을 상실하게 됩니다. 당장 지금만 봐도, 2가 답이니 288가 답이니 나뉘어져서 싸우고 있잖아요? 모든 사람들이 모호하게 받아들일 수 있는 표현을 동일하게 해석하도록 보장한다는 존재 목적을 잃은 것입니다. 그래서 저는 규칙으로 적혀있지 않은 규칙은 아무리 합리적이라도 가치가 없다고 생각합니다. 분명 자연스럽고 합리적이긴 하나, 규칙으로 명확히 정의하여 그걸 교과서에 싣고 학생들에게 가르치기 전까지는 모든 사람들이 그 규칙을 다함께 따른다는 건 불가능하고, 모두가 동의할 수도 없습니다. 솔직히 이런 관점에서 답은 2도, 288도 아니고, 문제가 잘못되었다 라는 식으로 이슈를 설명하는 영상을 기대했는데 너무 욕심이었을까요? 선생님께서 그렇게 강력하게 답은 2라고 주장하시면, 당연히 싸움판이 일어날 수 밖에 없습니다. 명시되어 있지 않은 규칙을 모두가 따른다는 건 불가능하니까요.
✨ 100만뷰 기념 이벤트가➚ 왔어요~✨
정승제의 50일 수학 '수학 문제 논란' 콘텐츠 100만 뷰 돌파 기념으로
총 56분께 선물을 드립니다!🎁🎊🎁
⭐ 참여 방법
1. EBSi 고교강의 채널 (www.youtube.com/@EBS_i) 구독하기🎈
2. 해당 게시물 하단에 댓글로 정승제의 50일 수학 콘텐츠 한 줄 평 후기 남기기✍🏻
⭐ 이벤트 경품
- 정승제의 50일 수학 e-book 📚(50명)
- 스타벅스 아메리카노 쿠폰 ☕ (4명)
- 후라이드 치킨 쿠폰 🍗 (2명)
⭐ 참여 기간 : 8/8(목)~8/18(일)
⭐ 당첨자 발표 : 8.19(월) *당첨자 개별 안내 예정
⭐ 유의사항
1. 이벤트 당첨자 선정 및 경품 전달을 위해 개인정보를 요청할 수 있습니다.
2. 이벤트 참여기간 내에만 응모가 가능합니다.
3. 정확하지 않은 개인정보의 문제로 인한 상품 미수령 및 반송 시 재발송되지 않습니다.
4. 본 이벤트는 해외 배송이 불가합니다. (당첨 시 한국 내 주소 필요)
5. 상기 이벤트 내용, 경품, 일정 등은 당사 사정에 의해 변경될 수 있습니다.
승제쌤 덕분에 수포자 포기하게 해준 최고의 강의
승제쌤 덕분에 수학에 대한 자신감과 수학을 풀며 내가 문제를 해결해서 느낀 성취감을 많이 느꼈어요 ㅠㅠ 항상 감사합니다💓💓
원리는 잘 몰라는데 승제쌤 덕분에 원리가 쉽게 이해되는 최고의 강의
승제 T는 제 인생의 구원자라 말해도 과언이 아니에요…❤ 콘텐츠 후기는 너무 알찼어요 ! 역시 승제T🎉
수학을 잘하기 위한 요령이 아닌 수학을 알려주는 강좌
옆에 작은화면으로 심장박동이랑 혈압 실시간 측정해서 표시해줘야함
ㅋㅋㅋㅋ
양궁이냐고ㅋㅋㅋㅋㅋㅋㅋㅋㅋ
ㅋㅋㅋㅋㅋㅋ
저렇게 강의하는데 .. 어떻게 살이 찌는거지...?
@@qnvoalsrnr 스트레스로 인한 체중증가?
스탠딩코미디가 참 유익하고 교육적이네요
개웃기긴 함ㅋㅋㅋㅋㅋ
이렇게 반복적인 생략된 곱셉은 승재쌤을 흥분하게 만들어요
아니 진짜 ㅋㅋㅋ 이렇게 곱셈에 흰자 보이면서 흐흐ㅡ흫 하명서 흥븐하능사람 첨 봄... 매력있다 ㅋㅋㅋㅋㅋ
굉징히 조심스런 말씀 잘들어봤습니다~
2:30 "생략된 곱셈은 결합된 것으로 본다."
본 영상의 알파이자 오메가.
근데 이 다음에 너무 사악하게 웃으심 ㅋㅋㅋㅋㅋ
오메가3
우하하하하 ㅋㅋㅋㅋㅋㅋ
이걸 모르면 288이라고 생각할수도 있다고 봄 ㅇㅇ 생략된 곱셈을 그냥 곱셈으로 보고 왼쪽부터 계산하면 288이 나오는거지
@@ffd6043그걸 모르면 수학적 머리가 제로라고봄 ㅋㅋㅋ
30살 먹어서 정말 오랜만에 수학을 보고 있는데 재밌네요
왜 그땐 EBS를 안봤나 싶을 정도로 선생님들이 많이 재밋게 하고 있다는게 느껴집니다 ㅋㅋㅋㅋ
지금은 문제를 풀어야한다는 강박없이 가벼운 마음으로 보니 재밌게 느껴지는 것 아닐까요 ㅎㅎㅎ
님때 이비에스는 노잼이였어요
지금 봐도 재미없는데...
뭘 그리도 길게, 흥분해서, 빙빙 돌아가며 쓸데없는 인터넷 논쟁에 시간을 허비하는지...
선생님 칠판 지우개가 상당히 좋아보입니다..
지울 때마다 기분이 좋네
앗..저도 칠판지우개만 보여욬ㅋㅋㅋㅋ
분필이 비싼걸로 얼고 있습니다
분필계의 에르메스
중간에 손으로 지울 때도 잘 지워지는 거 보면 칠판이랑 분필도 엄청 좋은 거 쓸듯
침착맨 방송에서 탄소 분필이라고 젤 싼거 쓰신 댔는디..
칠판이 좋은 거 아닐까
한문제를 두고도 이렇게나 열정 넘치는 정승제 선생님! 존경합니다.^^
아이들 키우는 학부모예요.저는 논란문제 정답을 당연히 2로 봤어요.
'50일 수학' 축하드리고,긍정에너지로 앞으로도 수학 잘 부탁드려요.응원합니다~!!😊
안녕하세요. EBSi 고교강의 채널입니다 :) 100만 뷰 기념 이벤트에 당첨되셨으니 아래 링크에 들어가셔서 당첨자 정보를 입력해 주시면 감사하겠습니다.
⬇⬇⬇⬇⬇구글폼 링크⬇⬇⬇⬇⬇
forms.gle/66tcLy9RfyrTRhAYA
숨넘어가겠어요 생선님
빵터졌다!!!!! ㅋㅋㅋㅋㅋㅋ
이젠 선생님도 아니넼ㅋㅋㅋㅋㅋㅋ
생선님 ㅎㅎ
영상제목이 생선님임ㅋㅋㅋㅋㅋ
엄청 흥분되나봐
사회가 공유하는 기본 정서... 공교육이 중요한 이유...
생략된 곱셈이고 나발이고 우리 정샘의 혈압보다 중요하지 않아요
제발 혈압 좀 챙기시길😂😂
마자요 저런건 쉬우니까 패스하고 .. 응용이나 마니틀리는거만 강조해주세요 .. 정렬적이야
맞아요.. 숨시기 힘들어 하시는 듯... ㅎ
@@뿌잉뿌잉-y3m맞아요, 많이, 정열!!!
결론 : 나는솔로다
근데 왜 솔로시지? 능력 좋고 애들 사랑하시고. 강의하시느라 시간이 없으셔서 그런가?ㅎㅎ
선생님 울리지마요
선생님 아직도... 제자들 다 가고 있는데😢
이제 나는솔로 출연 해주세요
곱하기 기호가 생략된건 더 강한 결합력을 갖는군요!! 좋은 강의 입니다 👍
그 의미가 맞는데 정확하게 말하면 곱셈 기호의 생략은 결합이 된 걸로 본다. 그러니까 괄호 친걸로 본다는 말입니다
40살인데 새벽 3시에 이걸 보고 있네.. 수포자라 수학 드럽게 못했지만 정승재 선생님과 같은 답을 갖고 있어서 기쁘고 이해하기 쉽게 제대로 설명해주셔서 감사합니다.
나도 올해 40인데 오후 8시에 이걸 보고있음 나도 수포자라 수학 못했지만 저 선생님과 같은 답을 생각하고 있어서 기뻤음.
헉 우리 85 소~ 동지들
선생님과 결혼하세요. 🤭
2:38 너무 시원한 웃음ㅋㅋㅋ 깔끔한 종결이네요 정확한 근거 설명해주셔서 너무 좋아요! 곱셈생략 -> 괄호생략!
차분한 설명 감사합니다.
“차분한” ㅋㅋㅋㅋㅋㅋㅋㅋ
시작부터 화나있으심...ㅋㅋ
화나 이글스..
ㅋㅋㅋㅋㅋㅋ
프로필때문애 늘 시작부터 화나있으심 이렇게 읽음ㅋㅋㅋㅋ
빡칠만 함
무식한 놈들 땜에 흥분하신거임
생략된!!!!!!!! 곱셈은~ 결합력이!!!!!!!!!!! 더 강한!!!!!!!!!!! 것으로!!! 바라보자~~~!!!!!!!!!!!!!!!
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 완벽한 정리
소리가 들린다 큰일
음라하하하ㅏㅎ
하지만 명문화된 표준규약 없쥬
문과, 수포자 였지만 문제의 논란과 이 영상을 본 후, 어릴때 처음 사칙연산 알려주신 선생님에게 무한한 감사를 드립니다. 선생님이 포기하신 어느 학생1이었겠지만 그래도 이 논란의 문제 속임수에 걸려들지 않았습니다.
이해를 잘못 하셨네요. 문제의 속임수가 아니라 둘다 맞을수 있지만 어떤것을 더 합리적으로 보느냐의 문제인것입니다.
@@vols-tz2nxzzzzzzzzzㅋㅋㅋㅋㅋ
2:36 선생님 웃음 킬포
이 문제가 처음 논란이되었을 때 당연히 2라고 생각했지만 왜?라고 묻는 친구의 질문에 그냥 당연한거라고 대답할 수 밖에 없었습니다.
시원한 설명 감사드립니다
이걸 2라고 생각하는 건 진짜 대단하네ㅋㅋㅋㅋㅋㅋㅋ
@@err12378다른 문제가 뒤에 또 나와요 ! ㅎㅎ
@@err123782가 맞으니까 2라고 생각하죠..
@@err12378 답이 2인데 반대로 생각하는게 더 대단한거죠 ㅋㅋ
@@ha-yeon. 1이 맞는데 2라고 생각하는게 웃기지ㅋㅋ
이런거에 목숨걸지 말라고 목숨건것처럼 이야기 해주시는 열정의 선생님 감사합니다.
하지만 댓글창들은 정 쌤이 그렇게 강조했음에도 목숨걸고 있는 사람들(자기들 답이 맞다고 좋아하는 사람들. 진실=그게 답이라고 정 쌤은 규정하지 않음)이 부지기수로 보이고 있죠. 정 쌤 소중한 13분 그냥 날렸어 ㅜㅠ
@sibisi-ir5zj 하나 더 덧붙이자면 '수학은 답이 하나인 절대진리 학문'이라는 은연 중에 갖는 우리들의 고정관념도 한 몫하는 것 같아요. 그러니 이거 아니면 저거여야 한다는 강박관념이랄까요. 결국 중요한 것은 그것이 '문제'인 이상출제자의 의도와 기준인 것을 말이죠.
@sibisi-ir5zj 그건 '취향' 의 문제가 아닙니다. 그걸 받아들이지 않는다면 지구에서 수학을 할 게 아니라 어디 저 알파센타우리 같은데 가서 우리와는 다른 '공리' 를 가지는 별에 가서 수학을 배워야 합니다. 이 '지구' 라는 별에서 공리는 승재샘이 말한 내용이고, 그건 '반드시' 받아들여야 하는 부분입니다.
abc 비유는 진짜 좋다.. 확 와닿았음
속 시원~함!! 개비스콘이 따로 없음
그래서 b제곱c제곱이 틀리단건 아니잖음. 1이 합리적이라는거지
@@곽재형-c8d 어떻게 계산해서 두개의 답이 나온지 알겠으나 2:30 에서 정승제쌤께서 말씀하셨듯이 사칙연산에서 약속을 한 부분입니다. (미국 수학 학회에서도 그렇게 정하기도 했고요)
개인적으로 다같이 약속을 정했는데 그것을 어겨 비합리적인 답을 제시했다는것은 틀린게 아닐까 싶어요.
@@곽재형-c8d 이런 애들이 5등급 나오는거지 ㅇㅇ. 요지 파악을 전혀 못하네
@@곽재형-c8db제곱 c제곱은 틀린답 맞음. 문자들 사이에 생략된 곱셈은 그냥 곱셈, 나눗셈 기호보다 연산 순위가 높아서 우선시 됨.
수학은 약속이라는 말이 와 닿네요. 같은 문제를 바라보는 시각도 이렇게 다를 수 있다니~
정승제 선생님의 속 시원한 풀이에 고개 끄덕여지네요!! 수포자 없는 대한민국을 만들어 가는 EBSi 고교강의와 정승제 선생님 만쉐이~
안녕하세요. EBSi 고교강의 채널입니다 :) 100만 뷰 기념 이벤트에 당첨되셨으니 아래 링크에 들어가셔서 당첨자 정보를 입력해 주시면 감사하겠습니다.
⬇⬇⬇⬇⬇구글폼 링크⬇⬇⬇⬇⬇
forms.gle/66tcLy9RfyrTRhAYA
무슨 어디 커뮤니티사이트에서 수학문제로 3시간동안 키배뜨다 온사람 같아요....
너무 당연하게 2라고 생각해서 친구들한테 설명하다가 논쟁만 더 커져서 이해시키기 힘들었는데 이 영상 공유해야겠네요 휴
288 이라고 믿는 무식한 친구는 오늘부로 손절해라
냅둬여ㅋ 물을 물이라 했는데 왜 물이야 되묻는 수준인데
팩트는 분배법칙 드립치는 애들은 그냥 얻어걸린거임
2가 아니면 뭐에요..?!
12:17 그러니까 결론은 [결혼하고 싶다...] 라는 거죠...?
승제쌤 덕분에 수학 성적도 오르고 수학 지식도 많이 알고 똑똑해졌어요💓🍀 고맙습니다❤️❤️
안녕하세요. EBSi 고교강의 채널입니다 :) 100만 뷰 기념 이벤트에 당첨되셨으니 아래 링크에 들어가셔서 당첨자 정보를 입력해 주시면 감사하겠습니다.
⬇⬇⬇⬇⬇구글폼 링크⬇⬇⬇⬇⬇
forms.gle/66tcLy9RfyrTRhAYA
독립적으로 개체화된 것의 성분을 계속 분해하여 분리해놓으면 결국 원형과의 거리가 멀어집니다. 곱셈 기호를 생략하고, 또 괄호를 사용하는 방식이 이용되는 이유는 결국 각 성분을 묶어서 개체화 하기 위함. 이건 수학도 아니고 언어이다.
진짜 이 말을 하고 싶었음, 이건 수리의 성질이 아니라 그냥 약속된 언어인데 그 언어를 까먹었으면서 자꾸 성질을 논함...;
형들 너무 어려워잉
@@SO-mc2sq 형 들 너 무 어 려 워 잉 이 아니라 형들 너무 어려워잉 이라고 하기로 약속했다는 뜻임
ㅋㅋ ㄹㅇ 중위 표기법으로 생기는 오류
그거 결국 수식 편하게 짜겠다고 설정한 규칙인데 그 규칙이 오히려 혼란을 초래한다면 바꾸거나 없애는게 맞지 않나 싶음
이렇게 설명했어야 했구나
오늘의 사이다!!!! 감사ㅠ ㅠ
설명이 중요한 게 아니라고 봐요. 설명은 괄호항부터 처리하는 이들이 타인에게 설명할 수 있어야 하는 부분아 것이고, 중요한 건 수학(저건 수학도 아닌 연산이지만)이란 정의가 중요하고 그에 따라 답이 다를 수 있다는 게 지금 정 쌤의 요지입니다. 즉 지금 댓글창에서 어느 답이 맞았다고 말하는 사람들은 이미 답정너의 자세로 이 영상을 봤다는 거. 정승제는 끝까지 답을 규정짓지 않아요. 즉 그 문제를 주관하는 곳이 인정하는 게 답이라는 게 정확한 입장이겠네요.
@@wonseokchoi131 정승제의 의견을 물어본다면 2라는대
@@이아-g6m 근데 정승제가 자기는 답을 규정하지 않겠다고 말을 했죠. 풀이가 아니라 풀이 외적인 이야기들이 핵심인데, 풀이에 꽂혀버리면 정 쌤은 13분 그냥 날린거죠. 이 영상을 끝까지 봐야 하는 이유는 정승제라는 유명 수학강사가 저걸 어떻게 푸느냐가 아니라 왜 논란이 되어선 안 된다고 하는지가 중요하기 때문입니다. 만약 그 이유를 '답이 2라서'라고 말한다면 죄송하지만 영상의 내용을 흘려들으신 게 아닐까요. 그렇기에 영상의 13분을 스킵없이 다시금 보시는 걸 추천드려요.
결합된 것으로 본다
라는 건 기억이 안나지만
곱셈 나눗셈에서는
기호가 생략된 곱셈이 가장 우선순위이다
라는건 분명히 기억함
그게 승제쌤이 말한 교과서마다 뉘앙스는 다르다 인거 같습니다!
처음에는 그 이론이 재미있었고
두번째는 그의 시선이 즐거웠고
세번째는 폭발할 것 같은 언성,
네번째는 에너지
다섯번째는 그의 열정이
여섯번째야 드디어
전부 같은 이야기를 하고 있음을 깨달았다.
계속되고 반복되는 말씀은 저를 각인시키게해요~
아..역시 정승제쌤은 1.7배속에서 가장 아름다우십니다
하지만 유튜브에선 1.75배속만 지원해줘서 볼 수가 없죠
끝까지 다 보고 아름답다는 말에 홀려섴ㅋㅋㅋㅋㅋ 1.75배속으로 다시 보고 있습니다. ㅋㅋㅋㅋㅋㅋㅋ 아름답네요!!!!!!
@@옴마야-n4n이 댓글을 보고 1.5배속으로 끝까지 다 본 저는 다시 1.75배속으로 보기 시작합니다.
@@IceBlue_112vm 아 그르네? ㅋㅋㅋ
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
12:43 안타까워 ... 왜 숨이 차신 거냐구요 😂😂😂
0:17 시카노코노코노코 코시탄탄~
ㅋㅋㅋㅋㅋㅋㅋㅋ
ㅋㅋㅋㅋㅋㅋㅋㅋ
ㅋㅋㅋㅋㅋㅋㅋㅋ
뭐라는거임?
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
아고고.. 생선님 흥분의 오른손 흰 장갑….호흡기도 좀 지켜드리고 싶네요오~~~🥓🥓
이 영상.. 24년도의 승제쌤 같아 요 맞져??!이렇게 명쾌하게 알려주시다니 감쟈드립니당!^_^*
10년 전에 수험생일 때 보던 선생님 모습 그대로셔서 뭔가 뭉클하네요🥹🥹 덕분에 수포자 이과생에서 1등급 잘 받고 원하는 학교갔었어요😍😍 항상 건강하시길😁
결국엔 논리의 문제가 아니라 약속의 문제니 논란을 이어나갈게 아니라 약속을 확인하면 되겠네요.
근데 저걸 약속이라고 안알려주면 모르는사람들도 웃김. 그럼 7÷7은 7÷1x7이니까 7x7이니까 49가 됨? 원하는거 다 만들수있음.
@@고건희예시가 틀렸어요... 3:03 확인하세요. 7÷1×7라고 쓰셨으면 49 맞아요. 곱셈 기호가 명시되면 앞부터 차례차례 계산하는 게 맞습니다. 7÷(1×7)이어야 7÷7과 같은 거예요...
@@김은지-e8k7s국어공부를 좀 열심히 해야할 것 같아보이네요😢
약속이 아니라 증명식을 알면 된다
공부해라
@@김은지-e8k7s 수학말고 국어부터 공부하셈
점점점 눈빛에서 광기가....ㅋㅋㅋㅋㅋㅋㅋㅋ 근데 진짜 머리에 쏙쏙 들어오네요
abc / abc 를 곱하기로 다 풀어서 계산하려고 했을때 괄호를 적었던 걸로 기억나요. (a*b*c)/(a*b*c) 이렇게요.어릴때 뭔가 습관적으로 그렇게 적었던거 같은데, 나름 이유가 있었네요. (눈높이 수학과 구몬 수학을 했었던...)
영상에서 말하고자 하는 핵심은 이런 거에 목숨걸지 말라는건데(10:12) 댓글은 서로 목숨걸고 있고 심지어 목숨걸지 말라고 말하는 선생님 본인도 상당히 흥분해 계심 ㅋㅋㅋㅋ
이분은 항상 수학얘기를 하실때 흥분해 계심 ㅋㅋㅋㅋㅋㅋ
한국인 전통적인 특징 : 인정중독,내로남불
사람들이 목숨 걸고 있는 이유는 애매하게 알고 있으면서 검색 안 해보고 자기 주장만을 고집하는 상대방이 똑같은 입장의 자신이 보기에 한심해보여서임. 하지만 승제쌤이 흥분한 이유는 중학교 때 알려주는 간단한 개념을 망각하고 하등 쓸모없는 멍청한 싸움을 하고 있는 그들한테 화가 나서임. 넓게 보셈
쓸데없이 흥분해서 1분이면 설명할수 있으면서 13분을 잡아먹네.
중학교때 1분설명 듣고이해못한사람이많아서 지금 댓글로 싸우고있는거같은데
(2*9+2*3)=2*(9+3) 입니다
괄호 밖에 수가 곱해져 있다는 것은 괄호 내 덧셈연산에 공통인수가 곱해져 있다는 뜻이며, 공통인수를 밖으로 뺀 것입니다.
나누기는 역수를 곱한 것입니다. 따라서 48/2(9+3)=48* 1/(2*9+2*3)=2 입니다.
개인적으로 저는 이 설명이 훨씬 이해하기 쉽네요
해당 식이 숫자가 아닌 문자로 된 문제였다면 이런 논란이 안 생겼을거 같기도 하네요 ㅎㅎ
사칙연산 배울때 졸던애들이 논란이라고 우김 ㅋㅋ 100년이 지나도 200년이 지나도 답은 2가 맞는데
이게 어떻게 288이 나오는지 ㄹㅇ수준
역으로 검증해보면 288이 나올수가 없는데..학창시절에 다 정리하고 단순계산에서 틀린지 아닌지 확인할때 역으로 검증해보는데 288이 나올수 있는 식인지.참..혼란스럽네요.😂
설명이 너무 깔끔하십니다.
이건 논점일탈의 오류입니다. (2*9+2*3)=2*(9+3)인건 당연히 참이고 여기에 반박할 사람은 없죠.
하지만 여기서 문제시 되는 건 48/2(9+3)라는 수식을 48/2*(9+3)으로 볼 것이냐, 48/{2*(9+3)}으로 볼 것이냐 입니다.
즉, 이 수식에서 괄호가 포함된 계산을 24*(9+3)으로 풀어야 하는가, 2*(9+3)으로 풀어야 하는가? 이것이 주된 논쟁이지, 2*(9+3) = (2*9+2*3)이 맞냐 아니냐가 주된 논쟁이 아니라는 겁니다.
당연한건데 시원하게 정의해 주셔서 감사합니다^^
선생님 목숨이 젤 걱정됨 혈압조심하세요
영상 감사합니다.
영상이 참 재밌네요 문제의 답이 이거야! 라기보단 비슷한 문제하나를 더 만들어서 이해하기 쉽게 유도하시는게 대박이네요!
다음번에 이런 비슷한문제로 토론이 생길때 [abc / abc = 1]
당장 게산기를 이용해 보시오.ㅋㅋㅋ
문자에서만 쓰이는 곱셈 생략을 숫자까지 끌고오니 생기는 문제죠
영상 요약 -> 48÷2(9+3) 이거는 48÷{2×(9+3)} 이거랑 똑같다는게 합리적인 생각이지 않겠냐?
혹시.. 중괄호 대괄호 모르실까요?
@@jwb652 수식 적어본지가 10년이 넘어서 중괄호 존재를 잊고있었네요. 고쳤습니다 ㅎㅎ
@@jwb652요청해서 했으면 답을 드려라
@@jwb652중괄호 안써도 딱히 상관 없지 않나여
@@jwb652 니엄마
수학을 사랑하는 승제쌤의 열정💕
최고예요 👍
이렇게 생긴 과일을 우리는 '사과'라고 부르기로 약속했어요. 하는데 누군가 '나는 그 약속에 동의할 수 없어요. 나는 그 과일을 삼과라고 하겠어요' 라고 하면, 그래 우리는 다 사과라고 할테니 너 혼자 삼과라고 해라 하는 수밖에... 그런 사람을 설득하려고 노력해봤자 무슨 소용이 있겠나요. 시간과 에너지만 낭비하는거지.. 저 수학식의 답을 288이라고 하는 사람이 있다면 구태여 설득하려 하지 말고 그냥 너혼자 그렇게 하세요 라고 말하는게 나를 위해서 더 좋은 일입니다.
그렇게 하는게 나의 삶에선 편안하지만 인류의 수학이 불편해지는 결과라서 안타까울뿐....
이렇게 생긴 과일은 사과임? apple임?
사과라 부르자 하면 사과고 apple라 부르자 하면 apple임
정의를 어떻게 하냐에 따라 다르다는 예시는 이게 더 맞음
수학이 역사도 아니고 다수론을 따름?
자 여기서 문제
1은3이고 2는4이다
1+2=?의 답은?
님이 생각하는 답은 3임? 7임?
3이랑 7 둘다 되는거 아닐까유
1=3,2=4면 3=7이니까@@이주희-s4j
@@이주희-s4j 과학처럼 어떤 현상으로 정해지는게 아니라 수학은 약속이니 다수론을 따르는게 맞죠.. 사과를 미국에선 apple이라고 부르는 이유는 그 나라에서 다수가 apple이라고 부르기로 했기 때문이고 우리나라에선 다수가 사과라고 부르기로 했기 때문이구요. 수학의 규칙도 "다수"의 수학자가 동의하거나 사용하면서 만들어진것들이고 수학도 역사가 맞습니다.
@@이주희-s4j 예시가 틀렸잖아. 뭔소리야 ㅋㅋㅋㅋ
중등 교육 과정에서 수학을 공부한 사람이라면 2가 더 합리적이라는 사고력을 가지는 게 당연한 것
정승제 선생님께서 하신 말씀처럼 언제나 개념은 그냥 의미 없이 외울께 아니라 이해하면서 스스로 설명하는 연습을 하면서 수학 실력을 키우는게 수학의 본질이고 수학은 언제나 기초가 안잡히면 나중에 무너지기 때문에 언제나 기본이 중요하다는 말씀을 하고 싶으신것 같고 EBSi들으면서 저는 수포자 였는데 정승제쌤을 만나고 나서 수학이 한결 괜찮아 졌고 50일 수학으로 저의 공백을 채울수 있어서 좋았던것 같다 정승제 선생님께서는 우리나라에 수포자 없애기 위해서 노력하십니다 그의 힘입어 저는 정승제 선생님 제자답게 항상 포기하지 않고 긍정적인 마음으로 하나하나 채워 나가다 보면 그 끝이 있으리라고 민ㄷ어 의심치 않으니 정승제 선생님을 믿고 나아가 보겠습니다 정승제 선생님,조교쌤,EBSi 화이팅
2:25 이부분을 읽지 않은 당신은 중1과정에 도달하지 않았습니다.
12:02
남편 자리는 비어있나요
당연하게 생각해서 저런 논란이 있다고 생각도 못했네요 ㅋ 개념 잘 배우고가요!
곧 40인데 선생님 너무 재밌어보여서 나도 모르게 클릭했어요..
캬 ebs 최고의 채널이야 역시
정말 고생이 많으시다..
10:21 그 누구보다 목숨걸고 계신느낌이에욬ㅋㅋㅋㅋ 혈압주의
48÷2(9+3)=2 / abc÷abc=1
보자마자 바로 이렇게 계산해서
와... 쉽다~했는데...
논란이 됐다길래 제가 틀린줄 알았어요ㅠ
(제가 학교다닐때 수학 징그럽게 못했었거든요ㅋ)
왜 이게 논란이 되는건지 아직도 모르겠는 낼모레 50인 아줌마입니다ㅠ😅
12:16 자신의 의견을 어필하기 위해 원하는 배우자 성향까지 말하는 대단하신 쌤
선생님 숨 넘어가시겠어요😂
개념에 대한 설명을 너무 쉽고 명쾌하게 알려주셔서 감사합니다! 무조건 암기가 아닌 개념에 대한 이해가 정말 중요하다는 것을 또 깨닫게 되었습니다!
진짜 답답했는데 시원..
선생님 덕에 설명이 더 쉬워졌어요
0:16
42살에 보고 있습니다....
ㅎㅎ
62살에 보고 있어요
승제쌤은 항상 강의할 때 엄청 열정적으로 하셔서 가끔 그 모습이 웃기기도 하지만ㅋㅋㅋㅋㅋㅋ 다른강의보다 훨씬 안지루해용 👍
안녕하세요. EBSi 고교강의 채널입니다 :) 100만 뷰 기념 이벤트에 당첨되셨으니 아래 링크에 들어가셔서 당첨자 정보를 입력해 주시면 감사하겠습니다.
⬇⬇⬇⬇⬇구글폼 링크⬇⬇⬇⬇⬇
forms.gle/66tcLy9RfyrTRhAYA
넘나 당연한 소리에 속이 다 시원함!
인강 오랜만에 보는데 넘 재밌다
결론.
" abc ÷ abc = 1 이라는 사람이랑 결혼하고 싶다."
너랑나랑나누면하나
왜 이제서야 올린건가 생각했는데 공개구혼이었네 ㄷㄷㄷ
허?
저렇게 생겼는데~
@@fxequalsc 님은 어떻게 생기셨나요?
아니!!!!! 너무 좋잖아요!!! 진짜 너무 감사합니다 수학 쉽게 가르쳐 주셔서요!!!!! 저도 가르치는 사람인데(?) 아이들에게 잘 가르쳐 줄 수 있어서 넘 행복해요💓💓💓 사랑합니다(?) ㅋㅋㅋㅋㅋㅋㅋㅋ 아이들이 제 수업 듣고 수학 재밋다고 할 때가 제일 행복한데요 그중에 8할은 진짜 정승제선생님 덕분입니다💓💓💓 항상 행복하세용~!~!~!
안녕하세요. EBSi 고교강의 채널입니다 :) 100만 뷰 기념 이벤트에 당첨되셨으니 아래 링크에 들어가셔서 당첨자 정보를 입력해 주시면 감사하겠습니다.
⬇⬇⬇⬇⬇구글폼 링크⬇⬇⬇⬇⬇
forms.gle/66tcLy9RfyrTRhAYA
2:37 사악해진 정승제
10:03 목이없어진 정승제
12:54 영어를 잘 모르는 정승제
10:24 진짜 핵심은 이거지. 어떻게 정의하느냐에 따라 달라지는 건데 여기에 목숨 걸지 말라고. 공교육이 어쩌고 상식이 저쩌고 단순암기가 어쩌고 이해가 저쩌구하면서 댓글창에서 목숨걸고 비하하는 애들은 사실 자기 얼굴 욕보이는 거나 다름없음..
선생님 곁에 응급구조사 필요해보입니다
둘 다 되니까 문제로서 가치 없다 생각했는데, 정승제 생선님이 가치를 만들었다.. 진정한 가치 있는 교육채널 EBSi
저 말이 정답이지.
생략했으면 그 생략의 주연자를 묶어야지.
와 웬만한 개콘보다 재밌어요 🎉🎉🎉
우리 샘은 버럭해도 귀여우심🎉
종결 보러 왔슴둥!!
정리해주셔서 감사합니다
10:21 여기 댓글들 대댓글들 "정승제가 2라잖아. 288은 수학머리가 없누. 대학 문턱도 못 밟았겠누. 국어 공부부터 하고 와야겠누." 이러고들 있는데😅 이 영상의 본질은 "목숨 걸지 마. 여기에." 이거다 인간들아.
ㅋㅋㅋㅋㅋㅋ선생님 왤케 흥분하셨어요 ㅋㅋㅋㅋ
오 해석 좋아요 선생님 명확해 졌어요
아직 새벽인데 답글이 달린다는게 신기하다 ㅋㅋㅋㅋ
지나가던 컴공입니다. TypeError: 'int' type not callable. 감사합니다.
*해설: 숫자 바로 뒤에 괄호가 나와서 숫자를 함수로 해석하려다가 발생한 에러
48÷two(9+3)
def two(n):
return n*2
암튼 동작하니 좋았쓰~
저만의 유사코드 PseudoPython에서는, 2(...)는 객체 2의 생성자란 뜻입니다. 그러나 어차피 인자가 있는 생성자가 없으니 FAIL 😂😂😂
파이썬에서 함수명 첫글자를 숫자로 썼다고?
으으 찐
난 국민학교때 배운걸로 판단해도 2 ㅋㅋ
사칙연산에서는 곱셉 나눗셈이 먼저 곱셈 나눗셈은 순서가 우선 괄호 있으면
괄호값 구하는게 제일우선 이렇게 알려주셨는데...
저건 괄호가 없자나요 ㅋㅋ
저는 애 엄마입니다. 그냥 정승제생선님 보고 싶어서 시청합니다. 많이 웃고, 좋은 기운 받고 가요~ 너무 좋아요!
결국 수식이란 우리가 어떤 문제를 계산하기 위해 긴 서술을 기호로 간단하게 표기한 것 아닐까요? 우리가 구하고자 하는 값이 뭐냐가 중요한 것 같습니다.
48÷2(9+3) = 식량48개를 2개의팀(팀당 9명의 여자와 3명의 남자로 이루어짐)에게 나눠준다고 하면 몇개씩 줄수 있는가?
48÷2×(9+3) = 1명당 식량48개를 주려 했지만 부족해 절반씩만 주기로 했다.9명의 여자와 3명의 남자에게 식량을 준다면 식량 몇개가 필요한가?
너무 당연하다고 생각한게 논쟁이 되는게 이상하다고 생각했는데 처음 배우는 입장에서 궁금 할 수는 일을 듯. 근데 저걸 고등학생 이상이 고민한다면…… 어질어질하네요.
ㅠㅠ
저게 무조건 2이라는 사람은 1/2/4가 무조건 0.5/4라고 우기는사람이랑 뭐가 다른거임?
식 자체가 애매모호하게 써있어서 0.5/4일지 2일지 아무도 모르는건데 뭔 말도안되는 규칙같은거 들고와서 어질어질 이러고있네
@@user-cy5so4ji9h1/2/4 이딴 분수가 있음?
1÷2÷4는 봤어도 저런 분수는 처음보네
@@user-cy5so4ji9h 근데 이건 괄호가 아예 없어서 전자가 답 맞아.....
@@유현민-z9s 번분수꼴인데 분자분모중 하나만 정수로 쓴 형태로 보면 있는 분수긴 함
아래 전자가 맞다는 모지리는 뭔소릴하고싶은건지 모르겠다
상식적으로 2가 맞는 것 같긴하지만 어그로용 문제면 모를까 진짜 시험에 나온거고 답이 한가지라고 조건도 없이 못 박는다면 출제자가 이상한거지
출제자가 이상한게 아니라 극소수의 무뇌충들이 상식을 이해 못해서 억지를 부리는거죠
쌤 찬찬히 들으니 너무 재미있어요😂👏👏👏👍
중1수학
곱셈기호는 수,문자의 결합시 생략가능
예)3×a=3a a×b=ab
단,수의 경우는 ㆍ을 찍는다
예)2×3=2ㆍ3
따라서 위 식은 오류입니다
따질 필요가 없지요
다만 분배법칙 표기법으로 문자로만 구성된 a(b+c)은 가능하나 수만으로 표기하고자 할때는 꼭ㆍ을 찍어서
2ㆍ(9+3)으로 한후 중괄호{ }로 묶고
또한 좌측선연산 규칙에 따르고자하면
2×(9+3)으로 표기하고 48÷2를 먼저 계산
이븅은 머지... ㆍ를 찍는 이유부터 확인해라 숫자는 2x3을 생략하면 23이 된다 그러면 누가 6이라고 생각하겠냐 23이라고 생각하지. 근데 ()가 끼는 순간 이것 혼동을 할 수가 없어서 ㆍ를 안쓰는 거다. 모르면 공부하고 오자
@@김진-f3f입에 걸레를 물었나요? 갑자기 욕을?
무지성이 지성을 압도하는 시대에 살고 있는게 제일 큰 문제 같아요. 선조들이 쌓아온 것을 삐뚤게 바라보고 말도 안되는 논리로 무너뜨리는 무지성주의가 너무 팽배합니다.
문자와 숫자의 결합에서만 주로 쓰이는 곱셈생략 방법을 숫자와 숫자 결합에서 쓰는것은 문제의 오류
수학에 1도 관심없던 사람도 움직이게 만들 명텐션!! 수학은 이제 정승제쌤 없으면 안된다는 소문이 ^^
강의. 열정. 와우!!! 😊
아 이벤트참여는 놓쳤지만
이미 정승제 50일수학 열공중입니다^^
재밌네요 ㅋㅋㅋㅋ
여러가지 자료들좀 찾아보고 왔는데
정승제님 말이 완벽하게 맞는듯
2가 무조건 맞다 ->틀린말
288이 무조건 맞다 ->틀린말
괄호 밖의 수를 먼저 곱해야 한다는 규칙은 어디에도 없음
다만 현대수학에서 문자가 포함된 식의 경우
곱셈기호의 생략은 결합된 것으로 본다는 규칙이 있기에
2로 보는것이 조금 더 합리적이다 라고 보는거임
다시한번 말하지만
괄호가 포함된 식에서 곱셈기호의 생략을 결합된 것으로
간주한다는 규칙은 없음
"~이 무조건 맞다"
"288이라고 생각한 사람들은 다 바보다"
이러고 있는데 규약이 완벽하게 정해지지 않은 문제에서 지말만 맞다고 하는 사람이 제일 멍청한거임
이게 맞다
선생님 영상 보고 조금 반론을 제시하고 싶어서 댓글 남깁니다.
영상 맨 처음에 말씀하신, 학생들이 '안타깝게도' 계속해서 암기한다는 연산 순서 규칙을 적용해서 순서대로 계산하면 답이 288이 나오고, 선생님께서 영상 내내 설명하신 숫자들 간의 생략되어 있는 곱셈이 더 높은 결합력을 가진다는 규칙을 적용해서 계산하면 답이 2가 나옵니다.
저는 선생님께서 설명하신 숫자들 간의 생략되어 있는 곱셈이 더 높은 결합력을 가진다는 그런 규칙을 처음 들어봅니다. 선생님께서도 영상에서 세상 어느 책에도 그런 내용은 없다고 말씀하셨고요. 그래도 영상에서 말씀하신 대로 그 규칙은 분명히 합리적인 규칙이라고 생각합니다. 시각적으로도 2(9+3)이 더 긴밀하게 묶여있는 것처럼 보이니까요.
하지만, 학생들이 암기한다는 그 연산 순서 규칙이 왜 존재하는지를 생각해봅시다. 연산 순서는 모든 사람들이 모호하게 받아들일 수 있는 표현을 동일하게 해석하도록 보장하기 위해 존재합니다.
따라서 48÷2(9+3)을 계산할 때 숫자들 간의 생략된 곱셈이 더 높은 결합력을 갖는다는 교과서에 쓰여져 있지 않은 그런 규칙을 적용해버리면, 연산 순서 규칙은 존재 목적을 상실하게 됩니다. 당장 지금만 봐도, 2가 답이니 288가 답이니 나뉘어져서 싸우고 있잖아요? 모든 사람들이 모호하게 받아들일 수 있는 표현을 동일하게 해석하도록 보장한다는 존재 목적을 잃은 것입니다.
그래서 저는 규칙으로 적혀있지 않은 규칙은 아무리 합리적이라도 가치가 없다고 생각합니다. 분명 자연스럽고 합리적이긴 하나, 규칙으로 명확히 정의하여 그걸 교과서에 싣고 학생들에게 가르치기 전까지는 모든 사람들이 그 규칙을 다함께 따른다는 건 불가능하고, 모두가 동의할 수도 없습니다.
솔직히 이런 관점에서 답은 2도, 288도 아니고, 문제가 잘못되었다 라는 식으로 이슈를 설명하는 영상을 기대했는데 너무 욕심이었을까요? 선생님께서 그렇게 강력하게 답은 2라고 주장하시면, 당연히 싸움판이 일어날 수 밖에 없습니다. 명시되어 있지 않은 규칙을 모두가 따른다는 건 불가능하니까요.
속시원한 쌤의 설명에 속이 뻥뻥~