Размер видео: 1280 X 720853 X 480640 X 360
Показать панель управления
Автовоспроизведение
Автоповтор
物理エンジンだと本来出来なさそうな事も可能にするからどんどん興味が湧いてくる
お前どこにでもいるよなw
こういうのって10年以上前に鉄腕DASHでやってた記憶ある。下から大きいスーパーボールを置いていって最後に一番上に小さなスーパーボールを繋げて質量差による反発威力高めてたのやってたわ。最後の企画として西武ドームの天井まで届いてたなぁ……。
その後照明落ちてね…
ぐちゃぐちゃになるのってfloatの誤差の影響ですね。桁数が大きくなるにつれて精度が低下するのが原因
スーパーボール何個で光の速さになるのか気になる
光速は厳しいんじゃ...
無限個ですね
現在わかっている範囲では無限大の力が必要なので無限個のボールが必要です
ニュートン力学ならそんな制約ないから…
光速の前に音速に達したときのソニックブームで周辺めちゃくちゃになりそう()
反発係数が1…だと…??
反発係数が1未満じゃないと、一生はね続ける??
反発係数1超えてるよりマシ⁉️
@@s454u53d 1個で済むよな、
一番上が100km飛んでる間に、ずれてバラバラになる下の奴らが見たい
同じ条件で、ぎりぎり宇宙に届くのはボール何個なのか知りたいです。
一番上以外のボールが全く跳ねないようにできれば, ボール列の合計質量が一番上のボールの質量のn倍のとき落下距離のn倍の高さまで飛ぶはず. ということは, ボール列の合計体積が直径2.3mの球と同程度あれば, 落下距離1mで100km達成できる計算になるので, 動画のシミュレーションではだいぶエネルギーのロスがでていると思う.いま, 速度vで落下してくる質量mのボールに下から速度Vで跳ね返ってくる質量Mのボールがぶつかったときのことを考えると, 衝突直後のボールの速度は 2(V+v)/{1+(m/M)} - v であり, 運動エネルギーが最大になるのは m = M/{1+2(v/V)} のとき.このとき, 下からk番目のボールの質量をm(k)とすると, m(1)/m(k-1) = kC2 となるのが理想的な質量比で, 具体的にはボールの個数が316個, 一番下のボールの直径が約1.84m, ボール列の下端と地面との距離が1mとすると最小の合計質量で宇宙に到達できる. ※空気抵抗や万有引力の式などは考慮してない.
これは2ボール間の運動量保存則から漸化式立てて解くやつだなぁ反発係数が1だと何回跳ね返っても全体の力学的エネルギーは変わらないから解きやすいなぁ理想的に考えてk個のボール全てが初め高さhにいるとすると、一番上のボールは力学的エネルギー保存則から(2^k-1)hまで飛ぶ。
子供の頃、ハンガーにかかってる服を片側を下に引っ張って取った時にハンガーを一回転させるのが夢だったんだけど、大抵行き過ぎて落ちちゃうからどうやったら上手く落とさずに一回転させられるのか検証して欲しい。
この人の研究って着目点から素晴らしいからとても興味深いんだよね~
これは研究なのか?
研究というよりは面白い実験?
まあ研究って言うと研究してる人に怒られるわな
@@user-catBrathers 別に怒られないと思いますよ(研究者目線)
厳密解が式で普通に導けるようなものをわざわざ物理エンジンでやっているので、これは研究ではなく、結果を得ることが目的でもなく、視聴者に実験をわかりやすく伝えること、もしくは物理エンジンの凄さを伝えることが目的です
おもしろい実験ですね!次があったら移動速度も表示してください。
ショート動画でやろうかな
第一宇宙速度超えてたりして。
5:00の落下時軽いヤツも重いヤツも同じ速度で落下して地面にぶつかるのがよくわかるな
今回の実験での「個数と到達高さ」に関する公式みたいのはあるのだろうか。また、それぞれの実験での「2個目」の到達高さも見てみたい。
1番上のボールに下の全てのボールが地面に衝突した際の総運動エネルギーが(遅延がないと想定すると)同時に伝わっているので、最初の静止時点でのそれぞれのボールの位置エネルギーを合計して、1番上のボールの位置エネルギーとして逆算することで、どの高さまで上がるか計算できると思います。でも物理エンジンでシミュレーションすると計算通りにいかないところがこういった試みの面白いところだと思います☺️現実だとボールがへこむ時間だけそれぞれで遅延が起こってエネルギーの相殺もあり上のボールにうまく伝わらないだろうなー
@@NK-gr8mh 詳しく説明ありがとうございます。ですが…難しすぎてわかりません😵できることなら映像で観てみたい😅
@@NK-gr8mh それだと1番上のボール以外は全く跳ねないことになってませんか?
導出は出来るとは思うけど、結構面倒かつ難しい計算をしないといけないと思う。2個バージョン+αで旧帝大入試レベルかと。例えシミュレーションの誤差とか考えなくても、NKさんのやつほど簡単には求まらない気がする
玉の個数をnと置き、1番上の玉と1番下の玉の初期位置が同じhだと仮定し、かつ玉の大きさを無視すれば1番上の玉の最高到達点HはH=(2(3/4)^(n-1)-1)²hと求められます(間違っていたらすいません)
地球とスーパーボールの距離を考慮した万有引力でやってみて欲しいです!
反発係数1のスーパーボール買ってきたけどピッタリ位置合わせるの難しい;
どこで買いました?
「汚いコードかもしれません⋯⋯」って出てきたけど結構綺麗やんって思ったら空行皆無で「そっち派の人かぁ〜!」ってなった
2つの場合上を物体A(質量m)下を物体B(質量2m)とする(物体はそれぞれ質点)(AとBはめっちゃ近いとする)Bが地面に到達する際の速さをvとすると跳ね上がる時も反発係数1より速さはvAとBが当たる時のAの速さもv(AとBはめっちゃ近いからだいたい同じ)衝突直後の速さをそれぞれV(A)、V(B)とすると運動量保存の法則、反発係数1より(上向き正)v=V(A)+2V(B) and 2v=V(A)-V(B)⇔V(A)=5v and V(B)=-1/3v結構な速度で上がるんですね。たしかにこりゃ増やしたら凄いわ。
Unityの物理演算でどこまで現実のスケール設定を踏襲できるか実演してみてほしい。目標の一例としては実スケールの地球【自転のみあり】で大陸間弾道軌道を再現とか。一般のパソコンだと無理そうかな?
開始地点の高さが変っちゃってるから,少ないやつも高さ100mとかからだとどうなるのか見たいなあ
これってそもそも、宇宙から落とせば一個でいいことだよな?
@@ka-bu 当たり前🤭
反発係数一ならね
むしろ2〜3個で宇宙行くにはどのレベルまで実力を倍にすればいいんだろう…(ぼそっ
スーパーポール2個だけで100km飛ばすとしたら、下のボールは上のボールの何倍の重さになるのでしょうか?
仕事の原理とエネルギー保存が毎回こんがらがる
二個の球で考える。上の玉の質量m,下の球の質量をmのk倍とする。鉛直上向きを正として、衝突が完了した直後の上の球、下の球の速度をそれぞれv1, v2とする。地面に衝突直前の速度を-Vとする。運動量保存則、反発係数の定義より、v1=(k(1+e)e+k-1)V / (k+1)v2=(k-1-e(1+e)) / (k+1)e=1 で考えるv2=0 となるとき、最も効率がよく上の球にエネルギーが伝わる。v2=0⇔k=3これは球が何個もあっても同様なので、上から順に質量が3倍ずつ増やしていく場合に効率が最大となる。3倍ずつ増やしていったバージョンの動画もできればお願いします!二番目以降の球がすべて停止し、一番上の球だけ飛び出すと思います。
空気抵抗がある状態だとどうなりますか?
マジでこの人スゴすぎる
トリビアの泉で同じようなことをしてたの思い出した。その時はクレーン車から落としてた笑
柳田理科雄先生がやってるチャンネルとコラボしてみて欲しいw先生が数値を出し、こーじさんが物理エンジンで実践 みたいな。
こういうこと考えるの好き
さっきのコメント間違えてました下から順に質量を1, 1/3, 1/6, 1/10, 1/15, 1/21 ,,,としたときに一番上の玉以外止まるみたいです。一番下から球に番号を1,2,3,,と振ります。n番目の質量/n+1番目の質量=n/(n+2) となるように比を取れば跳ね返り、次の球にあたった球の速度は0となります。
面白い実験でした。そしてこーじさんの生声が聞けるのホント良い(^_^)。
ガウス加速器をたくさん並べる実験みたいです!
距離デカすぎて重力も変わってくるからほんとはもっと上がりそう
どんな質量のものでも地球付近では9.8m/s^2で引き寄せる重力の凄さ(位置エネルギーが質量に比例するから力学的エネルギー保存より小球の運動エネルギーも大きくなる)がほんとよく分かる
宇宙に到達するのはわかったがコレが再び地球の方に戻ってきたら地球の方はどうなるのだろう!?
海を割るのに必要な力がどれ位か知りたいです。
壁際に宙ぶらりんで吊るしてるスーパーボールに大谷翔平選手が豪速球を投げた場合、真横にもの凄いスピードで跳ね返るんですか??
燃料を使わずに飛ばせる、新しいロケットが発明されたということですね!
音速を軽く超えてますね(笑 断熱圧縮ェ…(表面ギラギラがそう見えた
地球と同じスピードで自転する逆方向に行ったら時間止まるんじゃ無いですか?
プログラミングできるのすご
小さいボール一個とn個分の質量を持つ一個でやったら個数が多い時より飛ばなくなるんでしょうか。
20個でももっと高くから落とせば良かったのでは…?
一番下の高さが重要そうなので、そこを変えての実験をしてみて欲しい高さを変えない扁平なスーパーボールの実験も良さそう
扁平ならボールというかおはじきでは?
200mの高さから3万トンのスーパーボールまで作れて同時に落とせれば簡単に宇宙に打ち出せる!(スーパーボールを作るのと、落とすのが簡単じゃない)
bgm不思議ちゃんオーラ久々に聞いたほんとにできたら楽しそうですね
数式も作ってほしいですね!
そのときの速度は如何程に…?
宇宙まで飛ばすって実験なのに「重力加速度一定」の近似で演算するのは流石に無理がない?
分かったこと 宇宙に行くのは難しい
一石二鳥というのが現実的か実験して欲しいです
身長40m体重3万5千トンのウルトラマンに近いスーパーボール
めちゃおもろい検証だね、よくこんなアイデア💡思いつくね!さすがすぎる
反発係数変えてまたやって欲しい
重力圏突破に何個必要ですか?
これって縦じゃなくて、横でも可能ですか?可能でしたら地面に着かずに地球を一周できるか試してみてください。
unity 上に地球を作らないといけないの!?
@@アルト-b7w 夢のないことを言うなら初速が7.2km/sほどあれば一周できるよ
この原理を応用したスペースシャトルとか作れば安上がりで宇宙行けないすか?
行けるかあ
マジレスすると例えそんな素材があったとしても初速が早すぎて宇宙飛行士潰れてしまうそこらへんのミサイルの3倍以上の速さが一瞬で出るんだから確実に潰れる
この質量を落としても耐えられる床が有ればなぁ
おもしろかったです 笑これって高さに対する重力加速度は一定なのでしょうか?
20個で行けなくて30個で行ったなら、ギリギリ100km超えるのはいくつになるんだろう?計算すれば出るんだろうけど…
これって「どこにいっても同じ大きさの力が働く」のか、「万有引力みたいに距離が離れたら力が弱くなる」のかどっちなの?
これって、全部の位置エネルギーが1番上のに移ったって考えればいいんか?
倍率より個数が大事なのかな。そんな感じするよね。
ワシSwift勢だからせいぜいSceneKit使っても挙動限られるのつらい
ぎりぎりをせめた場合何個で10万メートル超すことになるんだろ
『どこかの国の寺院の先っぽ』がまず浮かんだ20個…( ̄▽ ̄;)
ハノイの塔が浮かんだ🤔
キン肉マンの、技をかける際にブリッジによって相手を空中高く跳ね上げる所を連想させる……
マッハ6くらい出てて草あと4倍くらい速ければ第一宇宙速度か…
超新星爆発ってこの原理なんだっけ?
反発係数0.9とかだとどうなる?
地上から離れたら重力も変わるのでもっと少なくても行けそう?
こういうの大好きww
世界一受けたい授業でありましたね
地球の重力すげぇ…()
3個目チョロギにしか見えなくなってきた
これって密度揃えるのはなぜ?
乗数ってすごい
モンハンの実験をして欲しいのですけど良いですか?(もうすでにやっていたらすみません)モンハンライズに出てくる翔蟲というのがいますけどそいつの出す糸の張力を求めてください!!(出来なければいいです!)
20個のとき地面との距離が近すぎてあまり飛ばなかったんだろうなぁ
日本の宇宙開発の未来は明るい。
なるほどスーパーボールだけで宇宙にいけるワケだなじゃあ、磁石なら何個あればいけるのかな❓😃
ミサイルはどこまで正確かっていう実験やってみてください!
重い順にお相撲さんを積み上げて落とすと一番上のちびっこ相撲の子は宇宙に行けるってことかナルホド
3万トンはもう重すぎてはねないのでは!?!?!?
現実でやりたいな~この動画で空気抵抗あるかしらんけど
20個から30個の間に何があるのかってぐらいの差が出たな
自分のコードが綺麗かどうかってわからないですよねー
なんで密度いじらなかったん笑
あやまるなソナタのコードは美しい
プログラムもできるのか…😊😄
おならで人間を宇宙まで飛ばしてください
200キロこえて落ちたらもう隕石なんよ
2018の医科歯科大に似た設定の問題がありますね
途中の玉って必要なのかな?
2個とか3個のとき2バウンド目が1バウンド目より高くなってるから、もっと少ない数でも10万m行けたんじゃ?
スマブラのホームランコンテストみたいや
なぜかこれをみてカーズを思い出した
この方法でスペースシャトル飛ばしたらめちゃエコじゃない?ww
リズム天国の餅たちが玉を運ぶやつを思い出した。
体積固定で挙動を見てみたい
物理エンジンだと本来出来なさそうな事も可能にするからどんどん興味が湧いてくる
お前どこにでもいるよなw
こういうのって10年以上前に鉄腕DASHでやってた記憶ある。
下から大きいスーパーボールを置いていって最後に一番上に小さなスーパーボールを繋げて質量差による反発威力高めてたのやってたわ。
最後の企画として西武ドームの天井まで届いてたなぁ……。
その後照明落ちてね…
ぐちゃぐちゃになるのってfloatの誤差の影響ですね。桁数が大きくなるにつれて精度が低下するのが原因
スーパーボール何個で光の速さになるのか気になる
光速は厳しいんじゃ...
無限個ですね
現在わかっている範囲では無限大の力が必要なので無限個のボールが必要です
ニュートン力学ならそんな制約ないから…
光速の前に音速に達したときのソニックブームで周辺めちゃくちゃになりそう()
反発係数が1…だと…??
反発係数が1未満じゃないと、一生はね続ける??
反発係数1超えてるよりマシ⁉️
@@s454u53d 1個で済むよな、
一番上が100km飛んでる間に、ずれてバラバラになる下の奴らが見たい
同じ条件で、ぎりぎり宇宙に届くのはボール何個なのか知りたいです。
一番上以外のボールが全く跳ねないようにできれば, ボール列の合計質量が一番上のボールの質量のn倍のとき落下距離のn倍の高さまで飛ぶはず. ということは, ボール列の合計体積が直径2.3mの球と同程度あれば, 落下距離1mで100km達成できる計算になるので, 動画のシミュレーションではだいぶエネルギーのロスがでていると思う.
いま, 速度vで落下してくる質量mのボールに下から速度Vで跳ね返ってくる質量Mのボールがぶつかったときのことを考えると, 衝突直後のボールの速度は 2(V+v)/{1+(m/M)} - v であり, 運動エネルギーが最大になるのは m = M/{1+2(v/V)} のとき.
このとき, 下からk番目のボールの質量をm(k)とすると, m(1)/m(k-1) = kC2 となるのが理想的な質量比で, 具体的にはボールの個数が316個, 一番下のボールの直径が約1.84m, ボール列の下端と地面との距離が1mとすると最小の合計質量で宇宙に到達できる. ※空気抵抗や万有引力の式などは考慮してない.
これは2ボール間の運動量保存則から漸化式立てて解くやつだなぁ
反発係数が1だと何回跳ね返っても全体の力学的エネルギーは変わらないから解きやすいなぁ
理想的に考えてk個のボール全てが初め高さhにいるとすると、一番上のボールは力学的エネルギー保存則から(2^k-1)hまで飛ぶ。
子供の頃、ハンガーにかかってる服を片側を下に引っ張って取った時にハンガーを一回転させるのが夢だったんだけど、大抵行き過ぎて落ちちゃうからどうやったら上手く落とさずに一回転させられるのか検証して欲しい。
この人の研究って着目点から素晴らしいからとても興味深いんだよね~
これは研究なのか?
研究というよりは面白い実験?
まあ研究って言うと研究してる人に怒られるわな
@@user-catBrathers 別に怒られないと思いますよ(研究者目線)
厳密解が式で普通に導けるようなものをわざわざ物理エンジンでやっているので、これは研究ではなく、結果を得ることが目的でもなく、視聴者に実験をわかりやすく伝えること、もしくは物理エンジンの凄さを伝えることが目的です
おもしろい実験ですね!
次があったら移動速度も表示してください。
ショート動画でやろうかな
第一宇宙速度超えてたりして。
5:00の落下時
軽いヤツも重いヤツも同じ速度で落下して地面にぶつかるのがよくわかるな
今回の実験での「個数と到達高さ」に関する公式みたいのはあるのだろうか。
また、それぞれの実験での「2個目」の到達高さも見てみたい。
1番上のボールに下の全てのボールが地面に衝突した際の総運動エネルギーが(遅延がないと想定すると)同時に伝わっているので、最初の静止時点でのそれぞれのボールの位置エネルギーを合計して、1番上のボールの位置エネルギーとして逆算することで、どの高さまで上がるか計算できると思います。
でも物理エンジンでシミュレーションすると計算通りにいかないところがこういった試みの面白いところだと思います☺️現実だとボールがへこむ時間だけそれぞれで遅延が起こってエネルギーの相殺もあり上のボールにうまく伝わらないだろうなー
@@NK-gr8mh 詳しく説明ありがとうございます。
ですが…
難しすぎてわかりません😵
できることなら映像で観てみたい😅
@@NK-gr8mh それだと1番上のボール以外は全く跳ねないことになってませんか?
導出は出来るとは思うけど、結構面倒かつ難しい計算をしないといけないと思う。
2個バージョン+αで旧帝大入試レベルかと。
例えシミュレーションの誤差とか考えなくても、NKさんのやつほど簡単には求まらない気がする
玉の個数をnと置き、1番上の玉と1番下の玉の初期位置が同じhだと仮定し、かつ玉の大きさを無視すれば1番上の玉の最高到達点Hは
H=(2(3/4)^(n-1)-1)²h
と求められます(間違っていたらすいません)
地球とスーパーボールの距離を考慮した万有引力でやってみて欲しいです!
反発係数1のスーパーボール買ってきたけどピッタリ位置合わせるの難しい;
どこで買いました?
「汚いコードかもしれません⋯⋯」
って出てきたけど結構綺麗やんって思ったら空行皆無で
「そっち派の人かぁ〜!」
ってなった
2つの場合
上を物体A(質量m)下を物体B(質量2m)とする(物体はそれぞれ質点)(AとBはめっちゃ近いとする)
Bが地面に到達する際の速さをvとすると
跳ね上がる時も反発係数1より速さはv
AとBが当たる時のAの速さもv(AとBはめっちゃ近いからだいたい同じ)
衝突直後の速さをそれぞれV(A)、V(B)とすると運動量保存の法則、反発係数1より(上向き正)
v=V(A)+2V(B) and 2v=V(A)-V(B)
⇔V(A)=5v and V(B)=-1/3v
結構な速度で上がるんですね。たしかにこりゃ増やしたら凄いわ。
Unityの物理演算でどこまで現実のスケール設定を踏襲できるか実演してみてほしい。
目標の一例としては実スケールの地球【自転のみあり】で大陸間弾道軌道を再現とか。
一般のパソコンだと無理そうかな?
開始地点の高さが変っちゃってるから,少ないやつも高さ100mとかからだとどうなるのか見たいなあ
これってそもそも、宇宙から落とせば一個でいいことだよな?
@@ka-bu 当たり前🤭
反発係数一ならね
むしろ2〜3個で宇宙行くにはどのレベルまで
実力を倍にすればいいんだろう…(ぼそっ
スーパーポール2個だけで100km飛ばすとしたら、下のボールは上のボールの何倍の重さになるのでしょうか?
仕事の原理とエネルギー保存が毎回こんがらがる
二個の球で考える。
上の玉の質量m,下の球の質量をmのk倍とする。
鉛直上向きを正として、衝突が完了した直後の上の球、下の球の速度をそれぞれv1, v2とする。
地面に衝突直前の速度を-Vとする。
運動量保存則、反発係数の定義より、
v1=(k(1+e)e+k-1)V / (k+1)
v2=(k-1-e(1+e)) / (k+1)
e=1 で考える
v2=0 となるとき、最も効率がよく上の球にエネルギーが伝わる。
v2=0⇔k=3
これは球が何個もあっても同様なので、上から順に質量が3倍ずつ増やしていく場合に効率が最大となる。
3倍ずつ増やしていったバージョンの動画もできればお願いします!
二番目以降の球がすべて停止し、一番上の球だけ飛び出すと思います。
空気抵抗がある状態だとどうなりますか?
マジでこの人スゴすぎる
トリビアの泉で同じようなことをしてたの思い出した。その時はクレーン車から落としてた笑
柳田理科雄先生がやってるチャンネルとコラボしてみて欲しいw
先生が数値を出し、こーじさんが物理エンジンで実践 みたいな。
こういうこと考えるの好き
さっきのコメント間違えてました
下から順に質量を1, 1/3, 1/6, 1/10, 1/15, 1/21 ,,,としたときに一番上の玉以外止まるみたいです。
一番下から球に番号を1,2,3,,と振ります。
n番目の質量/n+1番目の質量=n/(n+2) となるように比を取れば跳ね返り、次の球にあたった球の速度は0となります。
面白い実験でした。
そしてこーじさんの生声が聞けるのホント良い(^_^)。
ガウス加速器をたくさん並べる実験みたいです!
距離デカすぎて重力も変わってくるからほんとはもっと上がりそう
どんな質量のものでも地球付近では9.8m/s^2で引き寄せる重力の凄さ(位置エネルギーが質量に比例するから力学的エネルギー保存より小球の運動エネルギーも大きくなる)がほんとよく分かる
宇宙に到達するのはわかったがコレが再び
地球の方に戻ってきたら地球の方は
どうなるのだろう!?
海を割るのに必要な力がどれ位か知りたいです。
壁際に宙ぶらりんで吊るしてるスーパーボールに大谷翔平選手が豪速球を投げた場合、真横にもの凄いスピードで跳ね返るんですか??
燃料を使わずに飛ばせる、新しいロケットが発明されたということですね!
音速を軽く超えてますね(笑 断熱圧縮ェ…(表面ギラギラがそう見えた
地球と同じスピードで自転する逆方向に行ったら時間止まるんじゃ無いですか?
プログラミングできるのすご
小さいボール一個とn個分の質量を持つ一個でやったら個数が多い時より飛ばなくなるんでしょうか。
20個でももっと高くから落とせば良かったのでは…?
一番下の高さが重要そうなので、そこを変えての実験をしてみて欲しい
高さを変えない扁平なスーパーボールの実験も良さそう
扁平ならボールというかおはじきでは?
200mの高さから3万トンのスーパーボールまで作れて同時に落とせれば簡単に宇宙に打ち出せる!
(スーパーボールを作るのと、落とすのが簡単じゃない)
bgm不思議ちゃんオーラ久々に聞いた
ほんとにできたら楽しそうですね
数式も作ってほしいですね!
そのときの速度は如何程に…?
宇宙まで飛ばすって実験なのに「重力加速度一定」の近似で演算するのは流石に無理がない?
分かったこと 宇宙に行くのは難しい
一石二鳥というのが現実的か実験して欲しいです
身長40m体重3万5千トンのウルトラマンに近いスーパーボール
めちゃおもろい検証だね、よくこんなアイデア💡思いつくね!さすがすぎる
反発係数変えてまたやって欲しい
重力圏突破に何個必要ですか?
これって縦じゃなくて、横でも可能ですか?
可能でしたら地面に着かずに地球を一周できるか試してみてください。
unity 上に地球を作らないといけないの!?
@@アルト-b7w 夢のないことを言うなら初速が7.2km/sほどあれば一周できるよ
この原理を応用したスペースシャトルとか作れば安上がりで宇宙行けないすか?
行けるかあ
マジレスすると例えそんな素材があったとしても初速が早すぎて宇宙飛行士潰れてしまう
そこらへんのミサイルの3倍以上の速さが一瞬で出るんだから確実に潰れる
この質量を落としても耐えられる床が有ればなぁ
おもしろかったです 笑
これって高さに対する重力加速度は一定なのでしょうか?
20個で行けなくて30個で行ったなら、ギリギリ100km超えるのはいくつになるんだろう?
計算すれば出るんだろうけど…
これって「どこにいっても同じ大きさの力が働く」のか、「万有引力みたいに距離が離れたら力が弱くなる」のかどっちなの?
これって、全部の位置エネルギーが1番上のに移ったって考えればいいんか?
倍率より個数が大事なのかな。そんな感じするよね。
ワシSwift勢だからせいぜいSceneKit使っても挙動限られるのつらい
ぎりぎりをせめた場合何個で10万メートル超すことになるんだろ
『どこかの国の寺院の先っぽ』がまず浮かんだ20個…( ̄▽ ̄;)
ハノイの塔が浮かんだ🤔
キン肉マンの、技をかける際にブリッジによって相手を空中高く跳ね上げる所を連想させる……
マッハ6くらい出てて草
あと4倍くらい速ければ第一宇宙速度か…
超新星爆発ってこの原理なんだっけ?
反発係数0.9とかだとどうなる?
地上から離れたら重力も変わるのでもっと少なくても行けそう?
こういうの大好きww
世界一受けたい授業でありましたね
地球の重力すげぇ…()
3個目チョロギにしか見えなくなってきた
これって密度揃えるのはなぜ?
乗数ってすごい
モンハンの実験をして欲しいのですけど良いですか?(もうすでにやっていたらすみません)
モンハンライズに出てくる翔蟲というのがいますけどそいつの出す糸の張力を求めてください!!(出来なければいいです!)
20個のとき地面との距離が近すぎてあまり飛ばなかったんだろうなぁ
日本の宇宙開発の未来は明るい。
なるほど
スーパーボールだけで宇宙にいけるワケだな
じゃあ、磁石なら何個あればいけるのかな❓😃
ミサイルはどこまで正確かっていう実験やってみてください!
重い順にお相撲さんを積み上げて落とすと一番上のちびっこ相撲の子は宇宙に行けるってことかナルホド
3万トンはもう重すぎてはねないのでは!?!?!?
現実でやりたいな~
この動画で空気抵抗あるかしらんけど
20個から30個の間に何があるのかってぐらいの差が出たな
自分のコードが綺麗かどうかってわからないですよねー
なんで密度いじらなかったん笑
あやまるなソナタのコードは美しい
プログラムもできるのか…😊😄
おならで人間を宇宙まで飛ばしてください
200キロこえて落ちたらもう隕石なんよ
2018の医科歯科大に似た設定の問題がありますね
途中の玉って必要なのかな?
2個とか3個のとき2バウンド目が1バウンド目より高くなってるから、もっと少ない数でも10万m行けたんじゃ?
スマブラのホームランコンテストみたいや
なぜかこれをみてカーズを思い出した
この方法でスペースシャトル飛ばしたらめちゃエコじゃない?ww
リズム天国の餅たちが玉を運ぶやつを思い出した。
体積固定で挙動を見てみたい