看起來很好積分但實際上卻不能積分的函數,arccosx除cosx奇函數(ft.

Поделиться
HTML-код
  • Опубликовано: 22 янв 2025

Комментарии • 3

  • @鯉魚王-e5z
    @鯉魚王-e5z Час назад

    封面左邊是侯友宜嗎

  • @沈博智-x5y
    @沈博智-x5y День назад

    我的方法
    積分從 -pi/4 到 pi/4 arccos(x)/cos(x) dx
    = 積分從 -pi/4 到 pi/4 (pi/2 - arcsin(x))/cos(x) dx
    = 積分從 -pi/4 到 pi/4 [(pi/2)/cos(x) - arcsin(x)/cos(x)] dx
    = 積分從 -pi/4 到 pi/4 (pi/2)/cos(x) dx - 積分從 -pi/4 到 pi/4 arcsin(x)/cos(x) dx
    arcsin(x) 是奇的
    分母 cos(x) 是偶的
    所以 arcsin(x)/cos(x) 是奇的
    => 積分從 -pi/4 到 pi/4 arcsin(x)/cos(x) dx = 0
    積分從 -pi/4 到 pi/4 arccos(x)/cos(x) dx
    = pi/2 積分從 -pi/4 到 pi/4 1/cos(x) dx
    = (pi/2)(ln|sec(pi/4) + tan(pi/4)| - ln|sec(-pi/4) + tan(-pi/4)|)
    = (pi/2)(ln|根號 2 + 1| - ln|2^(1/2) - 1|)
    = (pi/2)ln|(sqrt(2)+1)/(sqrt(2)-1)|
    = (pi/2)ln|((sqrt(2)+1)^2)/(2-1)|
    = (pi/2)ln|(sqrt(2) + 1)^2|
    = (pi/2)ln((sqrt(2) + 1)^2)
    = pi ln|sqrt2 + 1|
    = pi ln(1 + sqrt(2))
    = pi ln(1 + sqrt(1 + 1^2))
    = pi arsinh(1)
    edit: I see bprp basically did the same method in original livestream.

    • @沈博智-x5y
      @沈博智-x5y День назад

      其實 equivalent 答案
      (pi/2)ln((sqrt(2)+1)/sqrt(2)-1) = pi arcoth(sqrt(2))
      (pi/2)ln((sqrt(2)+1)/sqrt(2)-1) = (pi/2)ln((1 + 1/sqrt(2))(1 - 1/sqrt(2))) = pi artanh(1/sqrt(2))
      pi ln(1+sqrt(2)) = pi arsinh(1) = pi artanh(1/sqrt(2)) = pi arcoth(sqrt(2))