Вычисление определителя | Определитель Вандермонда

Поделиться
HTML-код
  • Опубликовано: 17 дек 2024

Комментарии • 7

  • @ggggg4267
    @ggggg4267 Год назад +1

    Лайк, не глядя! Уважаю ваш канал!

  • @madmath9768
    @madmath9768 Год назад +3

    Даете больше алгебры!

  • @ДезидерияСильваджо
    @ДезидерияСильваджо 7 месяцев назад +1

    Спасибо огромное за видео! Мне за 60, в свое время в университете решали определители по Проскурякову. Определитель Вандермонда вызывал ужас. Очень рада тому, что в этой жизни узнала, как его вычислять... Может быть, кто-то из зрителей подскажет название задачника, из которого даны примеры для самостоятельного решения? Так хочется ответов пенсионеру...

    • @elemath
      @elemath  7 месяцев назад +1

      это Окунев. Сборник задач по Высшей алгебре.

    • @elemath
      @elemath  7 месяцев назад +1

      выложил его в тг канале

  • @Oktotrop
    @Oktotrop Год назад

    Определитель V_(n−1) получается из определителя V_(n) "вычёркиванием" последней строки и последнего столбца. Вы собирались выразить V_(n) через V_(n−1). Но вместо этого Вы выразили V_(n) через определитель, который получается из V_(n) "вычёркиванием" последней строки и первого столбца, после чего сказали, что последний определитель и есть V_(n−1) (тайм-код 14:30). Разумеется, это не так.

    • @elemath
      @elemath  Год назад +2

      Да, Вы совершенно правы. И хотя это определитель Вандермонда порядка на 1 меньше, при этом разложении его следовало бы обозначить как-то иначе, и произведение начинать с 2 до n.