Testing Lego-compatible Axles (max torque, durability, friction, etc)

Поделиться
HTML-код
  • Опубликовано: 10 ноя 2023
  • Lego plastic vs carbon fiber vs aluminium vs stainless steel. Lego-compatible axles tested comprehensively. Enjoy!
    0:09 Max torque test
    4:15 Durability test
    5:56 Friction test 1: car and a slope
    6:54 Friction test 2: rotating plate
    7:51 Noise test
    8:44 Insertion test into Lego parts
    9:44 Close-up images
    10:21 Weight & density comparison
    10:53 Price comparison (Nov 2023)
    11:14 RESULTS SUMMARY
    Carbon fiber axles are made by CaDA Bricks.
    decadastore.com/products/cada...
    Aluminium axles are made by Metal Technic Parts a.k.a. Dark Ice Designs. They also make the metal gears and beams that were used in the max torque test bench.
    metal-technic-parts.com/colle...
    Stainless steel axles were originally sold by Brick Machine Shop on BrickLink (obsolete), later cncgear on EBay (obsolete), and now planned to be sold by Prototype Production.
  • НаукаНаука

Комментарии • 1,6 тыс.

  • @Omegashotgun
    @Omegashotgun 5 месяцев назад +10935

    My absolute FAVORITE part of this video is that as it progresses, we get failure data for parts that aren't even suppose to be tested because the tests keep DESTROYING normal lego parts.

    • @Magrior
      @Magrior 5 месяцев назад +980

      "And finally, the steel axle can handle 12 Nm."
      "12 Nm?
      "Well, that's where our testing equipment broke..."

    • @RappelzWikiaPolska
      @RappelzWikiaPolska 5 месяцев назад +86

      @@Magrior made my day lol

    • @BakkuIa
      @BakkuIa 5 месяцев назад +201

      This happens in a lot of their videos and I think it's the best part. I don't remember which one it was, but the machine kept getting more and more ridiculous as tests continued.

    • @The177Hunter
      @The177Hunter 5 месяцев назад +149

      Part breaks, replace with steel. Test again. Part breaks, replace with steel. Eventually it will become all steel 😂

    • @reggiep75
      @reggiep75 5 месяцев назад +4

      I come here for the LEGO torture! 😂😉

  • @SimeVidas
    @SimeVidas 5 месяцев назад +4391

    We’re all carefully watching this video like we’re some executives at Lego, and we’re about to approve the new material for a special Lego set.

    • @stickguy9109
      @stickguy9109 5 месяцев назад +162

      I feel like an engineer just by watching the video

    • @deletdis6173
      @deletdis6173 5 месяцев назад +65

      Lmfao I feel grossly underdressed

    • @AusKipper1
      @AusKipper1 5 месяцев назад +20

      And in my case the special Lego set has to be carefully separated from the regular Lego set so as to not accidentally mix my genuine with non genuine Lego. Its kind of funny because some parts like metal axles and upgraded motors are better than the original, but all the bricks are significantly inferior. I really should just make a tier 1 set with the best of everything.

    • @eeznin1708
      @eeznin1708 5 месяцев назад +1

      ​@@deletdis6173omg u so funny sigma skibidi 😱

    • @TheRestedOne
      @TheRestedOne 5 месяцев назад

      What we don’t know is BEC presented this in a boardroom meeting before making this video public

  • @leokimvideo
    @leokimvideo 5 месяцев назад +1290

    The explosive nature of LEGO, amazing

  • @ericschori5519
    @ericschori5519 5 месяцев назад +308

    The steel insertion test is what happens if you forget to chamfer your edges after milling. It had edges at the end that were still sharp, and with a few seconds with a file or abrasive could probably be considerably improved.

    • @dazley8021
      @dazley8021 5 месяцев назад +6

      Would make them much less affordable tho... and they arent cheap as is.

    • @SkigBiggler
      @SkigBiggler 5 месяцев назад +32

      @@dazley8021If they’re expensive then most of that cost is simply mark-up because it’s a niche market. Looking at the steel axles, it looks like the manufacturer bought steel rod in the correct diameter, then used an end mill to cut the grooves. If it was done by hand the cost might be reasonable, but it’s almost certainly done on a CNC, where you could make a change in tooling to an appropriate rounded-edge end mill and get the correct profile without much extra work, making it easier to get parts onto the axle. A nice surface finish might be achieved by putting the axles in a vibratory tumbler.

    • @dazley8021
      @dazley8021 5 месяцев назад +2

      @@SkigBiggler extruding them with a set of dies that progressively cut it into a cross axle would be much cheaper i bet

    • @SkigBiggler
      @SkigBiggler 5 месяцев назад +6

      @@dazley8021 Initial investment in steel extrusion equipment and the dies would be quite expensive. If you already had the equipment or had someone nearby who could do it for a reasonable price, it’d be a better option. The aluminium axle was clearly extruded, but I think the equipment for that is a lot easier to get and cheaper, cause aluminium extrusions are pretty common, and operate at lower temperatures. Using a CNC setup would be a cheaper investment if the axles aren’t a huge seller, cause you can use it to make all sorts of small parts. If you were really mass producing at a huge scale, extrusion would definitely be the way to go, long term costs would be a lot less I think.

    • @timplett1
      @timplett1 5 месяцев назад +6

      The edges need chamfering all along the shaft too. You could actually hear a bit of a scraping sound in the sound test which is almost certainly those sharp corners slightly scraping the plastic. This likely hurt it in the friction test as well.

  • @MrZauberwuerfel
    @MrZauberwuerfel 5 месяцев назад +4129

    Carbon fiber has much higher potential, but the fibers in this axle are just in the axial direction. If there were fibers going diagonally around the center axis, the torque would be much higher. But due to the shape of these axles it might not be practically possible.
    If you could somehow do a pull test, the carbon fiber axle might be stronger than the steel one. But for torque, the carbon fiber axle is probably not much stronger than the resin used to reinforce the fibers.

    • @hashbrown777
      @hashbrown777 5 месяцев назад +520

      Yeah axles are not the appropriate application for carbon fibre. Idk who thought to make them other than selling it to people who think it's a magic buzzword

    • @magnemoe1
      @magnemoe1 5 месяцев назад +131

      Also the size, for something like an car's drive shaft carbon fiber make sense, you can use many layers in different directions and an steel drive shaft is heavy.

    • @ABaumstumpf
      @ABaumstumpf 5 месяцев назад +146

      @@hashbrown777 Nah, the carbon-fibre axles are GREAT for when you need a stiffer longer connection. Lego them self sometimes use long axles to reinforce things like ship masts and there the normal axles are just not good enough and the carbonfibre fits the bill.

    • @hashbrown777
      @hashbrown777 5 месяцев назад +63

      @@ABaumstumpf hm, if you're not using them AS axles then maybe, but fibre's strength is in tensile, not deflection, and you might find that using pure binder, whatever resin it is holding the fibres, will be just as strong over lego's stock plastic for holding masts without any carbon over the distances these axles are in length..

    • @GTLugo
      @GTLugo 5 месяцев назад +70

      I'm not a material engineer, but don't you all forget now that the primary benefit to carbon fiber is not necessarily just the strength, it's the strength-to-weight ratio. It's still a good option for when you need stiff, but lightweight rods, such as in aerospace applications. Tom Stanton has used them a couple times for his lightweight airplanes to go with his compressed air engines.

  • @COGintheMachine
    @COGintheMachine 5 месяцев назад +1688

    Well, now this guy has metal beams, metal gears, metal axles and metal connectors. Should we expect a full-metal lego set?

    • @joseaca1010
      @joseaca1010 5 месяцев назад +333

      Metal Gear!? It cant be...

    • @7HEMUFFINMAN
      @7HEMUFFINMAN 5 месяцев назад +171

      @@joseaca1010 the gears were pretty solid if you ask me

    • @mrblack5145
      @mrblack5145 5 месяцев назад

      Like an erector set?

    • @legendreoli
      @legendreoli 5 месяцев назад +70

      ​@@joseaca1010I was thinking of a full-metal alchemist

    • @thepwrtank18
      @thepwrtank18 5 месяцев назад +51

      @@7HEMUFFINMAN were they rising tho

  • @gearcheck101
    @gearcheck101 5 месяцев назад +226

    Four billionaires cried out in terror and were suddenly silenced as the carbon fiber started to crackle.

    • @theblackwidower
      @theblackwidower Месяц назад +10

      Too soon.

    • @redbuck1385
      @redbuck1385 Месяц назад +10

      ​@@theblackwidowerOh? What's the requisite amount of time, then?

    • @theblackwidower
      @theblackwidower Месяц назад +8

      @@redbuck1385 Twenty-eight months.

    • @redbuck1385
      @redbuck1385 Месяц назад +21

      @@theblackwidower Gentlemen, synchronize your death watches.

    • @JordanDunaway-gl1wz
      @JordanDunaway-gl1wz Месяц назад

      @@redbuck1385ok sir

  • @AverageMichaelJordans
    @AverageMichaelJordans 5 месяцев назад +130

    That twisted steel axle looks seriously cool, and it probably still works well, I'd love to see it return in a future build, just wherever you can fit it :)

    • @FinC1_
      @FinC1_ 5 месяцев назад +1

      I'd love to have one hanging like a pendant or something.

  • @chrismichaelyoung
    @chrismichaelyoung 5 месяцев назад +800

    Not sure how feasible this would be, but would be cool to see this test done with different plastics (mostly thinking about Delrin) and maybe even different metals (like Titanium or something)

    • @HzachGames
      @HzachGames 5 месяцев назад +35

      Titanium is pretty expensive

    • @aria290
      @aria290 5 месяцев назад +37

      delrin is just a brand name of POM, that same plastic Lego axles are already made of, so I doubt you'd see any meaningful difference

    • @anttij2973
      @anttij2973 5 месяцев назад +5

      The channel probably has enough money to buy it

    • @keine_ahnung_wie_der_heisst
      @keine_ahnung_wie_der_heisst 5 месяцев назад +15

      @@HzachGames and its ac5tually weaker than steal, its just way ligther

    • @Maurdekye
      @Maurdekye 5 месяцев назад +12

      i want to see tungsten carbide

  • @user-ce7ic1ze2u
    @user-ce7ic1ze2u 5 месяцев назад +485

    Pretty sure the Lego axles had better tolerances, hence the lower friction in the two tests

    • @ABaumstumpf
      @ABaumstumpf 5 месяцев назад +71

      Nope, not at all. The friction is simply the material. Axles are made from POM and that is a good choice for Lego axles as it is a tough, abbrasion-resistant and self-lubricating material.

    • @mo-s-
      @mo-s- 5 месяцев назад +5

      @@ABaumstumpf I don't think they're made from Peaces Of Metal /s

    • @ABaumstumpf
      @ABaumstumpf 5 месяцев назад +17

      @@mo-s- yeah.. still, the material is called POM, or Polyoxymethylen ... bit long for my taste.

    • @orange8175
      @orange8175 5 месяцев назад

      what?@@ABaumstumpf

    • @karigori6415
      @karigori6415 5 месяцев назад +1

      POM refers to a plastic polymer, the name is just an abbreviation.

  • @Spaceflight_Simulator945
    @Spaceflight_Simulator945 5 месяцев назад +24

    3:08 I am now convinced that this is how drill bits are made and cannot be persuaded otherwise.

  • @user-rc8nc5gm5s
    @user-rc8nc5gm5s Месяц назад +11

    Who else wanted to see a titanium rod 🧞‍♂️

  • @gagerdoodooz
    @gagerdoodooz 5 месяцев назад +25

    3:35 This is the best lego destructive pop I've ever seen so far...

    • @user-qz1tw6ih3p
      @user-qz1tw6ih3p 8 дней назад

      8 tooth gear:COCA COLA ESPUMA! *everything explodes*

  • @ungeschaut
    @ungeschaut 5 месяцев назад +26

    3:14 Link when he sets the Deku Mask on

    • @eticket48
      @eticket48 Месяц назад

      This comment made my day

    • @Dexuz
      @Dexuz 8 дней назад

      Underrated

  • @endy2629
    @endy2629 5 месяцев назад +91

    Would have been cool to see the amount of torque each could handle before permanent deformation. Feel like that would be more applicable for actual usage in most cases.
    Edit: nvm, those values are listed in the graph at 11:16

    • @AlexAnteroLammikko
      @AlexAnteroLammikko 5 месяцев назад +8

      Yeah for sure. You can kind of look at the numbers going up and when the deformation occurs and estimate for yourself, but indeed I think that would be more practical.
      Seeing them break is more YT friendly though as breaking shit is better than slightly deforming for the algorithm.

    • @yugang4430
      @yugang4430 5 месяцев назад +1

      He did that. Look at the last chart

    • @endy2629
      @endy2629 5 месяцев назад

      @@yugang4430 Oh, I didn't notice that. Thanks for pointing it out :D

  • @MrPruske
    @MrPruske 5 месяцев назад +5

    3:12
    The motor-
    "Time to put on my hollow mask"

  • @B4sk3tdud3
    @B4sk3tdud3 5 месяцев назад +141

    I feel like in the friction test, you should have accounted for the mass of the axles themselves, the steel axle isn't necessarily doing worse because it has more friction, it might be because it's just heavier than the other parts. Great video!

    • @CorsaMaster
      @CorsaMaster 5 месяцев назад +5

      I don't think so, because you if you're gonna use it in an build it's gonna make it more heavy, you can't have equal weight

    • @GR4ZM0ZY
      @GR4ZM0ZY 5 месяцев назад +20

      @@CorsaMaster yeh but you're testing friction here, not overall best subject..

    • @AaronCoutts-cp6pk
      @AaronCoutts-cp6pk 5 месяцев назад +4

      well, trains are so efficiant because the wheels are steel on steel, not steel on plastic. mabye the materials need to be tested on materials of the same type, which also helps with the durability test due to plastic not being able to scratch steel.

    • @trainzack
      @trainzack 5 месяцев назад +7

      In friction test 2, the axle isn't rotating so the mass of the axle is irrelevant.

    • @blakceyedpeas
      @blakceyedpeas 5 месяцев назад +1

      i think in the first run steel axle performed better due to larger momentum. adding some weight evened it out a bit, so it performed comparably worse.

  • @mybrainsmuseum
    @mybrainsmuseum 5 месяцев назад +26

    This is like Project Farm for Lego, continue this series please.

  • @Szriko
    @Szriko 5 месяцев назад +8

    at around 3:20 it sounds like the deku scrub transformation in majora's mask.

  • @red_benny123
    @red_benny123 5 месяцев назад +8

    1:59 steel Axle is just chilling

  • @ABaumstumpf
    @ABaumstumpf 5 месяцев назад +27

    When using non-POM axles in general it is advised to use some lubricant.
    That is the biggest other difference between standard Lego axles and the other materials: POM is self-lubricating.

    • @DrakoonLP
      @DrakoonLP 5 месяцев назад

      How does the self lubrication work?

    • @ABaumstumpf
      @ABaumstumpf 5 месяцев назад +1

      @@DrakoonLP Not a material engineer so - don't really know how it works, i just know it does and is one of the defining characteristics why you would use POM.

  • @Exarxhyy
    @Exarxhyy 5 месяцев назад +79

    next up: lego rpg vs real rpg

  • @althejazzman
    @althejazzman 4 месяца назад +6

    The twists in the axles were so artistically formed, I could stare at them for ages!

  • @orangemonkeykiller
    @orangemonkeykiller 5 месяцев назад +145

    The torque test on the aluminium didn't get a fair shake because the grub screws would have created a weak point, which the others didn't have to contend with

    • @XxxThePsyCheMisTxxX
      @XxxThePsyCheMisTxxX 5 месяцев назад +27

      Maximum yield strength to torque shear (all he was reporting in the twist test) is only part of the story. The beginning of bending is a more important figure, because ANY deformation is bad for machine reliability.

    • @anteshell
      @anteshell 5 месяцев назад +11

      @@XxxThePsyCheMisTxxX "ANY deformation is bad for machine reliability" That statement is simply not true. Have you ever heard about springs? Their sole purpose is to deform.

    • @Valkhiya
      @Valkhiya 5 месяцев назад +51

      @@anteshell Yes but that's elastic deformation, not plastic deformation.

    • @anteshell
      @anteshell 5 месяцев назад +8

      @@Valkhiya exactly. But the claim was specifically about "any" deformation. They even capitalized the word to emphasize it further.

    • @Valkhiya
      @Valkhiya 5 месяцев назад +43

      @@anteshell There's being correct, and then there's being pedantic.

  • @maskedmonster
    @maskedmonster 5 месяцев назад +8

    0:28 damn the Lego plastic axle transformed into Haribo licorice

  • @GeorgeTsiros
    @GeorgeTsiros 5 месяцев назад +7

    4:08 now it is an ✨art piece ✨ 😂

  • @tylermatheson4376
    @tylermatheson4376 5 месяцев назад +6

    1:30 I’ve never seen that happen with that part before 😨
    Probably because I mostly just use standard Lego parts 😅

  • @stijnd5268
    @stijnd5268 5 месяцев назад +60

    Do you think you could do a test with different types of gears at some point as well? Would love to see how much more durable the metal ones are in high stress scenarios, and how much of a cost it has on the friction (and maybe if lubricant can give even better performance?)

  • @js70371
    @js70371 5 месяцев назад +11

    The little machine that did the torque test at the beginning was so powerful!!! I can’t believe it was able to twist that steel bar the way it did.

  • @aleksjenner677
    @aleksjenner677 5 месяцев назад +7

    8:33 the framing on these tests is beautiful, lining up the axle and the line between wall and table. nicely composed

  • @willforstervisuals
    @willforstervisuals 5 месяцев назад +10

    1:21 every episode of SpongeBob has one shot like this

  • @lethalogicax2474
    @lethalogicax2474 5 месяцев назад +55

    Love the experiments! Very thorough job testing all the aspects of each material. I noticed especially the difference in cross-sectional area between the aluminum and steel axles. The aluminum has very rounded edges while the steel has very sharp edges. Id imagine this probably contributed significantly to the insertion tests.
    I'm curious if you could do one additional test and report back? (you definitely don't have to, just curious) Use a set of calipers to measure the maximum cross-sectional width and see if there is a difference between the aluminum and steel axle due to the chamfers. Clamp down on the axle at 45deg(where the cross section width would be the smallest) and rotate the axle in the calipers to 90deg. I'm curious if the chamfers of the edges make a significant difference in its maximum cross-sectional width?

    • @BrickExperimentChannel
      @BrickExperimentChannel  5 месяцев назад +50

      Well, I'm curious too. :) These numbers I got with a caliper. Hopefully my eyes saw them correctly.
      maximum diameter:
      Lego 4.7 mm
      carbon fiber 4.6 mm
      aluminium 4.6 mm
      steel 4.7 mm
      minimum diameter (axle 45deg):
      Lego 4.4 mm
      carbon fiber 4.2 mm
      aluminium 4.2 mm
      steel 4.4 mm
      Looks like the steel axle is thicker and also sharper in the chamfers, compared to aluminium.

    • @lethalogicax2474
      @lethalogicax2474 5 месяцев назад +9

      @@BrickExperimentChannel Interesting! Not as great a difference as I suspected... Thanks for doing this! I appreciate that you went above and beyond!

    • @AaronCoutts-cp6pk
      @AaronCoutts-cp6pk 5 месяцев назад +1

      as i have said in another comment, trains are efficiant due to low steel on steel friction. mabye you should test materials on there own materials? also, i saw bits of plastic lego after the steel slide on test, so that says the steel took some bits off of the lego bits. thanks for the good video, tho, i would like to see more.@@BrickExperimentChannel

    • @joshwand
      @joshwand 5 месяцев назад

      Use a micrometer or a dial indicator, and get variance across samples as well as within each sample :) Also the surface finish on the steel is still quite rough due to milling marks. I wonder how it (and the aluminum) would fare after some scraping/polishing.

    • @jpfidalgo7
      @jpfidalgo7 5 месяцев назад

      yeah, the edges probably had some influence on the insertion.
      But I would add that the surface finish might influence significantly as well.

  • @VR60102
    @VR60102 5 месяцев назад +30

    Lego should make some official steel/aluminum axles

    • @XxxThePsyCheMisTxxX
      @XxxThePsyCheMisTxxX 5 месяцев назад +4

      Aluminum is choice. If only the longer torque-carrying axles are aluminum and the rest is regular LEGO, the engineering is only so complicated. Steel is overkill, as it will shred plastic loooong before twisting, where aluminum's excess strength is less, and it is cheaper and lighter.
      Aluminum axle couplings are also a good idea, guy shreds several in this video!

  • @igorkuritsyn5749
    @igorkuritsyn5749 5 месяцев назад +8

    8:38 To analyse noise you should record noise values at regular time intervals and find the average value. You can also find the measurement error using the method of least squares.

  • @user-xp1el6id2d
    @user-xp1el6id2d 5 месяцев назад +10

    1:35 top 10 unexpected turns in whole universe. Number 1:

    • @stargazzer9166
      @stargazzer9166 5 месяцев назад +4

      The machine isn’t testing the axles, the axles are testing the machine 🪑

    • @user-xp1el6id2d
      @user-xp1el6id2d 5 месяцев назад

      @@stargazzer9166 fr

  • @Krzys_D
    @Krzys_D 5 месяцев назад +18

    The steel ones need better tolerances but they will grow or shrink depending on temperature they look very roughly machined too

    • @CheeseMiser
      @CheeseMiser 5 месяцев назад

      Shut up and enjoy the video

    • @RandomNothing88
      @RandomNothing88 5 месяцев назад +8

      Every material expands when temperature rises. This is not exclusive to steel. This is just basic physics.

    • @alanESV2
      @alanESV2 5 месяцев назад +1

      Looks like we need legos made of gold

    • @ex5080
      @ex5080 5 месяцев назад +4

      @@alanESV2 ends up twisting faster than normal lego 😆

    • @CrAzII-kd2df
      @CrAzII-kd2df 5 месяцев назад +2

      Especially the ends. You can see the plastic ones being cast nice and round while the steel one was simply cut at 45 degrees on a lathe.

  • @FloydMaxwell
    @FloydMaxwell 5 месяцев назад +7

    Love that you've brought engineering/testing into the mix. I'm even more impressed with LEGO parts.

  • @perplexedon9834
    @perplexedon9834 5 месяцев назад +5

    It likely doesnt matter because the ranking was the same at the higher load, but having a more consistent release in the car friction test would increase the accuracy and precision of the results. Ideally a mechanical release that doesnt impart any forward or backward momentum would be ideal, such as raising a boom gate with a programmed motor or similarly retracting a bump into the ground.
    Same with the noise test. Using the rpm method from before would have been better. You do what you did on the previous test to could spin it up to 300, then use a laser to test when it reaches 200 rpm and record the 200rpm volume

  • @ariel_monaco
    @ariel_monaco 5 месяцев назад

    Brilliant! Thanks for the shootout and results!

  • @hybrid.roodragon1226
    @hybrid.roodragon1226 5 месяцев назад +6

    3:30. Kinda predicted that

  • @trevorweis192
    @trevorweis192 5 месяцев назад +4

    Love watching these tests, not sure why. Just a suggestion - in a comparison like the friction test, especially where as you rightly decided it wouldn’t be super interesting to watch at full speed, you could show all four videos at once (each doing a quarter of the screen). Could also do something similar with rolling tests by super imposing the videos. Keep ‘‘em coming!

  • @user-pr6ed3ri2k
    @user-pr6ed3ri2k 5 месяцев назад +5

    😮 3:42 just as i was praying yhe motors didnt break

  • @AndrewTyberg
    @AndrewTyberg 5 месяцев назад

    I love all the different tests you came up with. I would absolutely like to see this concept done with other types of pieces.

  • @GibusWearingMann
    @GibusWearingMann 5 месяцев назад +11

    The cross-section of the steel axle is noticeably different than the others; I wonder how much of a role that played in the insertion test.

  • @Scott.E.H
    @Scott.E.H 5 месяцев назад +3

    I like the inadvertent testing of bricks, gears, and connectors lol

  • @fuckoff9137
    @fuckoff9137 5 месяцев назад +5

    0:40 - that looks kinda cool

  • @alexskyrahfall4962
    @alexskyrahfall4962 5 месяцев назад

    Fascinating, I love the methodical approach and the camera work. Nicely done. Another interesting test might be how sturdiness on length, if a force is acting on the axle as a lever. If somebody already suggested that, sorry for the repetition.
    I’ve build some sailing ships using axles to stabilize the masts 2x2 round bricks with axle hole. When you brick build sails all axles bend forward due to the weight on one side of the mast. So far I used Lego, carbon fiber and steel axles and all bend differently, my favorite carbon fiber.

  • @connorcubed
    @connorcubed Месяц назад

    I am learning a lot of these concepts in my engineering courses and its fun to see them built out of lego

  • @lastminutesavior
    @lastminutesavior 5 месяцев назад +4

    Oh no! It's... THE KRAGLE! 😱

  • @NoName5589
    @NoName5589 5 месяцев назад +4

    Giving us the "3D" view by rotating the axles close up (with lego motors of course) was a really nice touch

  • @PatriciaCross
    @PatriciaCross 5 месяцев назад +2

    Would love to see a similar test comparing the plastic from different decades.

  • @tim..indeed
    @tim..indeed 5 месяцев назад +3

    Basically: Buy LEGO unless you do some extreme stress tests.

  • @zkatt3238
    @zkatt3238 5 месяцев назад +4

    Wait wait wait, isn't the friction test flawed? You didn't account for the additional mass of the metal axles

    • @jasperboer9854
      @jasperboer9854 5 дней назад

      Yeah but the test in general wasn't great for friction testing. But who cares the second one was reliable

  • @ohthisguy_
    @ohthisguy_ 5 месяцев назад +5

    the only channel i know that makes lego cars for a job XD

  • @timteecvhn
    @timteecvhn 5 месяцев назад +4

    A great way to improve the insertion test results is if all three of the non-official lego parts have their edges smoothed alongside the veins being slimmed just the tiniest bit to match the official part properly more closely. Other than that I think a brass one would probably work really well in terms of the friction tests potentially. Or maybe a different metal that doesn't provide much friction in such conditions if any.

    • @jpfidalgo7
      @jpfidalgo7 5 месяцев назад

      Yeah, but that probaly will influence the fit. Maybe polish first, and see how it changes?

  • @lordoqwgames
    @lordoqwgames 5 месяцев назад +2

    7:06 ASMR

  • @riccardoorlando2262
    @riccardoorlando2262 5 месяцев назад +13

    I wish you tested the torque of plastic deformation. While the carbon fiber and lego axles seemed to have similar ultimate failure torques, the lego stick seemed to show plastic deformation much sooner...

    • @XxxThePsyCheMisTxxX
      @XxxThePsyCheMisTxxX 5 месяцев назад +3

      Great observation!!! The beginning of deformation matters more for engineering than the maximum yield.
      Exceptions are when a system is only designed to run briefly and can be allowed to destroy itself (nitromethane dragster engines, explosives, single-use rocket engines).

    • @quinnobi42
      @quinnobi42 5 месяцев назад

      that would have been nice, though much harder to test, since you'd have to have a continuous data stream with the torque measurement as well as the rotational displacement.

    • @amaureaLua
      @amaureaLua 5 месяцев назад

      Isn't this the third row in his summary table at the end?

  • @star80doessdastuff
    @star80doessdastuff 5 месяцев назад +10

    Wow! I had no idea that many were made!

  • @arthurellanna3766
    @arthurellanna3766 5 месяцев назад +1

    Killer vid as per usual! Have you considered using graphite dust to smooth the carbon fiber/metal parts? It'd go a long way to reduce friction/noise. An old trick we had for roller derbys I thought it was fitting

  • @xavierjiang7112
    @xavierjiang7112 5 месяцев назад +2

    Lego axles are able to have lower resistance because of ultra-fine-tuned curvature and notch, something Lego themselves with the digital models can, while axles of other material have imperfections and can only mimic.
    Metal parts also respond to lubricants much better.
    I am sure some of us are secretly dreaming of all-metal legos. That won't be the worst idea, I don't think.

    • @hylje
      @hylje 5 месяцев назад

      I’d settle for metal power train components that interface in a durable way with plastic Lego components so you can make insanely powerful builds that disassemble instantly once you go full power

  • @iknowredstone1234
    @iknowredstone1234 5 месяцев назад +18

    for the durability test to make sense you need to make both the axle and the bearing from the same material. otherwise the harder material (in this case the axle) will destroy the bearing

  • @Gman556
    @Gman556 5 месяцев назад +3

    How about shear load strain testing, like seeing how much weight a horizontal axle can handle? The metals would probably win out by a long shot but I'm curious to see how the carbon fiber performs.

  • @unapersona4425
    @unapersona4425 4 месяца назад

    Wow, congratulations, very detailed

  • @CroissantCreates
    @CroissantCreates 5 месяцев назад

    I liked you starting with the thumbnail and then using it, it actually was a cool vibe

  • @Epb7304
    @Epb7304 5 месяцев назад +13

    very cool video, on the second friction test, how were you insuring that the block was rotating at a consistant speed at the beginning of each test?

    • @AphX7
      @AphX7 5 месяцев назад +1

      I second this question.

    • @demoths
      @demoths 5 месяцев назад +5

      I assume the maximum rpm of the motor was reached before release

    • @BrickExperimentChannel
      @BrickExperimentChannel  5 месяцев назад +11

      Good question. I just let the motor run until it doesn't speed up anymore, which I could tell from the sound. Before testing I verified with a laser tachometer that the motor runs at 330 rpm while rotating the plate, both with a plastic axle and a steel axle. The no-load speed of the motor is also 330 rpm, so the friction and air resistance are negligible compared to the power of the motor. The biggest source of error is in my opinion the variance in the motor top speed. It varies maybe 5 or 10 rpm up or down.

    • @Epb7304
      @Epb7304 5 месяцев назад

      @@BrickExperimentChannel ok, very cool!

  • @Romanon26
    @Romanon26 5 месяцев назад +3

    8:48 This is not a very scientific measurement, your time will improve with the number of repetitions because you get better with the number of repetitions and train your muscle memory ;)

  • @Maccaroney
    @Maccaroney 5 месяцев назад

    I could watch these kinds of videos all day long. Love it.

  • @Kisai_Yuki
    @Kisai_Yuki 5 месяцев назад +1

    It's very interesting. You also have to realize that the reason why LEGO is all plastic is because it's intended to be used by kids. BUT I will counter-point that with Construx actually had metal axles and was ALSO targeted at kids, it just wasn't around that long to have any incidents that I'm aware of (eg injuries from sitting on one.) I think bigger take away here is that Lego probably could sell metal parts with a warning that "metal parts are intended to be used by adults" , as I could see situations where people lose fingers/eyes/scalp by trying experiments without proper protection.

  • @hugoiker2447
    @hugoiker2447 5 месяцев назад +4

    Where did you get the steel one?

  • @weibrot6683
    @weibrot6683 5 месяцев назад +3

    Now think about it, we're only seeing around 12nm here, when you tighten a wheel nut you often use 90nm or more, thats a torque every humam can easily put out, and its enough to destroy a steel rod

  • @momsel9378
    @momsel9378 5 месяцев назад

    That's such a niche type of videos on RUclips and I love it.

  • @AflacMan13
    @AflacMan13 5 месяцев назад

    The scale at the end shows an interestingly graduated trend across all the tests. Good work! :-)

  • @Annihilator_5024
    @Annihilator_5024 5 месяцев назад +4

    they've gotta add some graphene rods

  • @sansgranie6164
    @sansgranie6164 5 месяцев назад +8

    friction test on ramp is unvalid due to higher mass of alu and steel axels so they have more inertia momentum (in basic it's harder to spin heavier axle)

    • @Celeste-ty5pb
      @Celeste-ty5pb 5 месяцев назад

      the outting pueces on test is also scientifically invalid (used different pieces likely with different wear, didnt measure the force needed to put pieces on) but i dont think thats the point of the video. its just fun to watch

  • @koharumi1
    @koharumi1 5 месяцев назад +2

    For friction test 1, was the car sent straight every time or did it turn a little? As a slight turn could affect the final result.
    Same with the push force

  • @grigorsamsa6564
    @grigorsamsa6564 5 месяцев назад +2

    I'm sure you know this already, but for the other people watching, be very careful of carbon fiber dust from cutting or, in this case, destructive testing. It's (probably) *real bad* for your lungs. Think asbestos. It's not entirely the chemical composition (in the case of CF you have to worry about the resin as well) but the shape of the tiny, pointy slivers that damages lungs. Wear a respirator, have an air filter, take all precautions you can.

    • @RryhhbfrHhgdHhgd356
      @RryhhbfrHhgdHhgd356 5 месяцев назад

      Was looking for this comment! Carbon fiber fibers are really bad to breath in.

  • @RasmusBerggren-uo6uu
    @RasmusBerggren-uo6uu 5 месяцев назад +3

    Hold you’re horses don’t forget the metal alloys, tungsten and titanium they may be expensive but we can’t forget them.

    • @ABaumstumpf
      @ABaumstumpf 5 месяцев назад

      Tungsten is a tad bit heavy :D

    • @Idkwholmao
      @Idkwholmao 2 месяца назад

      ​@@ABaumstumpf and brittle so Boosh, metal explosion!

  • @acomingextinction
    @acomingextinction 5 месяцев назад +2

    4:46
    relatable

  • @Fnuxray
    @Fnuxray Месяц назад +1

    4:34 that one mosquito that refuses to leave the room

  • @SmashingBricksAU
    @SmashingBricksAU 5 месяцев назад

    I have bought some of the aluminum ones and they work great in high load transfers that use longer distance axles.

  • @________2705
    @________2705 5 месяцев назад +5

    01:15 there you go carbon-boys... only steel is real ,)

    • @sillicon8227
      @sillicon8227 Месяц назад

      Steel is strengthed by carbon, you're also made of carbon. everything has different strengths, using this video as an argument for carbon fiber being weak is like saying that jet-planes are horrible because they can't drive on lamd

  • @siddhartdesai6472
    @siddhartdesai6472 5 месяцев назад +4

    How and why cold and hot 5:11

  • @Manual_Elitist
    @Manual_Elitist 5 месяцев назад

    I definitely need to get metal gears, axles, and connectors for my 4spd transmission

  • @Debbiebabe69
    @Debbiebabe69 5 месяцев назад +1

    This test shows off exactly the same situation as the mathematical 'How many digit of Pi do you need' question.
    A workpiece is only as strong as its weakest part. Having carbon, aluminium, steel, or even titanium axles makes no difference if the rest of the thing is made of lego bricks. When making something out of lego bricks, the optimal axle is one made of.... lego. If you are making something out of steel, use steel axles.
    If you are wondering the answer to the Pi question, it is to use pi to the number of digits of the least accurate variable in the equation. For example, most people have heard the formula are is pi r squared. If the radius to 7 figures, for example 12.34567cm, then you need Pi to 7 figures as well - 3.141593. If the radius is 'about 7 feet', then you only need Pi = 3.

  • @overload006
    @overload006 5 месяцев назад +4

    00:36 🦅🦅🦅🦅 FREEDOM🇺🇸

  • @blueyedevilqueen
    @blueyedevilqueen 5 месяцев назад +4

    8:09 what the fuck

  • @user-of3vm4be1g
    @user-of3vm4be1g 5 месяцев назад

    Coolest test of lego parts I've ever seen.

  • @rainbowdinosaurrrrrr
    @rainbowdinosaurrrrrr 5 месяцев назад +2

    4:34 its sounds like a sped up version of a demon being exorcised (sorry just watched the Conjuring lmaooo)

  • @9an13l
    @9an13l 5 месяцев назад +3

    What type of carbon fiber? Forged? Prepreg? Laminar? Carbon ≠ Carbon

    • @BrickExperimentChannel
      @BrickExperimentChannel  5 месяцев назад +1

      I asked CaDA about their carbon fiber axles. These were the only details they gave (with permission the share publicly).
      Tow: 12K 25K
      Sizing agent: 1.0%
      Twisted: twisted, no twist
      Thermal expansion coefficient: -0.45 10(-6)/℃
      Specific heat capacity: 0.18 Cal/g.℃
      Thermal conductivity: 0.0252 Cal/cm.s.
      Resistance: 1.6 x10(-3)Ω·cm
      Sodium and potassium content:

  • @Star_gazer-yt
    @Star_gazer-yt 5 месяцев назад +2

    6:58 it looks like they are spinning in different directions

  • @rsquared9703
    @rsquared9703 5 месяцев назад +2

    For the friction test the overall weight of the car needs to be the same, the steel goes father probably due to it’s increased mass than less friction. Also surface finish of each shaft is a variable.

  • @imluxury7597
    @imluxury7597 5 месяцев назад +2

    @9:00 i dont think its the pieces fault that you fumbled inserting...

  • @vapormermaid
    @vapormermaid 5 месяцев назад

    Would be interesting to see a sliding test of various pieces down the length of each axle. Both a test that sees how much time it takes for a machine to move a piece down the length of the axle using a fixed force for each, and a test that determines the minimum force required for a machine to slide the piece down the axle.

  • @henryherold4515
    @henryherold4515 5 месяцев назад +1

    I wonder if maybe the shape of the ends had an influence on the insertion test? It looked like the 3rd party parts had a different end profile than the official LEGO axle.

  • @Parents_of_Twins
    @Parents_of_Twins 4 месяца назад

    Why am I just now finding this channel? This is freaking awesomesauce!!

  • @seniaamira8070
    @seniaamira8070 5 месяцев назад

    Your Lego automation builds are next-level awesome! 🌈👾

  • @johnlink9397
    @johnlink9397 5 месяцев назад

    I love the extremely close zoom on each piece

  • @pladmitry
    @pladmitry 5 месяцев назад

    Would love to have more data points for each test, however this is still entertaining!

  • @daved2352
    @daved2352 5 месяцев назад +1

    A good test would be to see if a high polish would make the Aluminium and Steel friction numbers better.

  • @Pkwe_
    @Pkwe_ Месяц назад +1

    My man is NOT giving up