Mapping Malaria Risk With Google Earth Engine For Effective Disease Control

Поделиться
HTML-код
  • Опубликовано: 6 янв 2025

Комментарии • 2

  • @YHWH979
    @YHWH979 11 дней назад

    sir kindly share code

    • @techhive.2023
      @techhive.2023  5 дней назад

      // Load the Tamil Nadu boundary
      var tamilNadu = ee.FeatureCollection('FAO/GAUL_SIMPLIFIED_500m/2015/level1')
      .filter(ee.Filter.eq('ADM1_NAME', 'Tamil Nadu'));
      // Center the map
      Map.centerObject(tamilNadu, 7);
      Map.addLayer(tamilNadu, {color: 'red'}, 'Tamil Nadu Boundary');
      // Load environmental data
      // 1. Temperature (MODIS)
      var temperature = ee.ImageCollection('MODIS/061/MOD11A2')
      .filterDate('2023-01-01', '2023-12-31')
      .select('LST_Day_1km')
      .map(function(image) {
      return image.multiply(0.02).subtract(273.15)
      .copyProperties(image, ['system:time_start']);
      });
      var meanTemperature = temperature.mean().clip(tamilNadu);
      // 2. Precipitation (CHIRPS)
      var precipitation = ee.ImageCollection('UCSB-CHG/CHIRPS/DAILY')
      .filterDate('2023-01-01', '2023-12-31');
      var totalPrecipitation = precipitation.sum().clip(tamilNadu);
      // 3. Vegetation Index (NDVI from Sentinel-2)
      var sentinel2 = ee.ImageCollection('COPERNICUS/S2')
      .filterDate('2023-01-01', '2023-12-31')
      .filterBounds(tamilNadu)
      .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
      .map(function(image) {
      var ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI');
      return image.addBands(ndvi);
      });
      var meanNDVI = sentinel2.select('NDVI').mean().clip(tamilNadu);
      // 4. Water Bodies (JRC Global Surface Water)
      var waterOccurrence = ee.ImageCollection('JRC/GSW1_4/MonthlyHistory')
      .select('water') // Corrected from 'occurrence' to 'water'
      .mean()
      .clip(tamilNadu);
      // Combine the variables into a single multiband image
      var predictors = meanTemperature.rename('Temperature')
      .addBands(totalPrecipitation.rename('Precipitation'))
      .addBands(meanNDVI.rename('NDVI'))
      .addBands(waterOccurrence.rename('WaterOccurrence'));
      // Visualize the environmental layers
      Map.addLayer(meanTemperature, {min: 20, max: 40, palette: ['blue', 'yellow', 'red']}, 'Mean Temperature');
      Map.addLayer(totalPrecipitation, {min: 0, max: 1000, palette: ['white', 'blue']}, 'Total Precipitation');
      Map.addLayer(meanNDVI, {min: 0, max: 1, palette: ['brown', 'green']}, 'Mean NDVI');
      Map.addLayer(waterOccurrence, {min: 0, max: 100, palette: ['white', 'blue']}, 'Water Occurrence');
      // Sample the predictors for training data
      // Add training points based on known malaria cases or hotspots in Tamil Nadu
      var malariaCases = ee.FeatureCollection([
      ee.Feature(ee.Geometry.Point([78.1198, 11.6643]), {'Malaria': 1}), // Example: Salem
      ee.Feature(ee.Geometry.Point([78.7047, 10.7905]), {'Malaria': 1}), // Example: Trichy
      ee.Feature(ee.Geometry.Point([79.1325, 12.9716]), {'Malaria': 1}), // Example: Chennai
      ee.Feature(ee.Geometry.Point([77.1025, 11.2558]), {'Malaria': 0}), // Example: Coimbatore
      ee.Feature(ee.Geometry.Point([78.7047, 9.9252]), {'Malaria': 0}) // Example: Madurai
      ]);
      // Overlay predictors on malaria cases
      var trainingData = predictors.sampleRegions({
      collection: malariaCases,
      properties: ['Malaria'],
      scale: 1000
      });
      // Train a Random Forest Classifier
      var classifier = ee.Classifier.smileRandomForest(50).train({
      features: trainingData,
      classProperty: 'Malaria',
      inputProperties: ['Temperature', 'Precipitation', 'NDVI', 'WaterOccurrence']
      });
      // Classify the region
      var malariaRisk = predictors.classify(classifier).rename('MalariaRisk');
      // Visualize predicted malaria risk
      Map.addLayer(malariaRisk, {min: 0, max: 1, palette: ['green', 'red']}, 'Malaria Risk');
      // Export predicted malaria risk map
      Export.image.toDrive({
      image: malariaRisk,
      description: 'TamilNadu_Malaria_Risk_Map',
      scale: 1000,
      region: tamilNadu,
      fileFormat: 'GeoTIFF'
      });