TECH HIVE
TECH HIVE
  • Видео 399
  • Просмотров 81 230
Mastering Supervised Classification of Landsat 8 Data in GEE
Mastering Supervised Classification of Landsat 8 Data in GEE
Supervised Classification of Landsat 8 imagery in Google Earth Engine | Part 1
Supervised classification in Google Earth Engine | Landsat 8 image
Supervised Classification for Land Cover Mapping with Landsat 8 in Google Earth Engine
Supervised Classification of Landsat 8 imagery in Google Earth Engine | Part 2
Supervised Classification (CART) - Machine Learning with Landsat in Google Earth Engine
Supervised Landsat8 Classification in Google Earth Engine | Full Tutorial with Code Explanation | JS
Supervised Classification in Google Earth Engine
Google Earth Engine Tutorial | Supervised Classification using Landsat Data
Supervised Classifi...
Просмотров: 65

Видео

How to Downscale MODIS Land Cover Data Using Google Earth Engine
Просмотров 6521 час назад
How to Downscale MODIS Land Cover Data Using Google Earth Engine Google Earth Engine 33: Load & Export MODIS Land Cover Data | Land Cover Downscaling Landcover Data using Machine Learning (ML) Approach in Google Earth Engine Google Earth Engine Tutorial-49: MODIS LST Downscaling, From 1000 to 100m Google Earth Engine 34: Load & Export NLCD Land Cover Data | United States | Land Cover Google Ear...
Heat wave Impact Mapping with Google Earth Engine (Full Guide)
Просмотров 81День назад
Heatwave Impact Mapping with Google Earth Engine (Full Guide) Beginners Guide to Google Earth Engine (GEE) Geo for Good 2022: Earth Engine Map Visualization Techniques LST, Urban Heat Island Effect, and UTFVI Analysis using Google Earth Engine and Landsat dataset LST and Urban Heat Island Effect Analysis Google Earth Engine Guide Complete Google Earth Engine for Remote Sensing & GIS analysis fo...
Mapping Malaria Risk With Google Earth Engine For Effective Disease Control
Просмотров 101День назад
Google Earth Engine to Help Predict Spread of Malaria How maps packed with data help scientists fight malaria Post AT6FUI 2016: GIS-based map of malaria risk in El Salvador Google Earth Engine 41: Mapping Global Forest Fire using MODIS Burned Area Drought Mapping with VCI in Google Earth Engine: A Step-by-Step Tutorial Climate Information for Malaria Prevention, Control and Elimination Flood Ma...
Google Earth Engine For Rainfall Predictions Full Walkthrough
Просмотров 130День назад
Google Earth Engine For Rainfall Predictions Full Walkthrough Daily rainfall datasets (CHIRPS) in Google earth engine (GEE) Predicting LST with Population, Rain, and Elevation using Random Forest Regression in Earth Engine Monitoring Bioclimatic variables Precipitation seasonality using Google Earth Engine || GEE Download Climate Data (Rainfall) from 1981 - 2022 using Earth Engine API Google Ea...
Google Earth Engine Tutorial Calculate ET, LE, PET & PLE for Evapotranspiration & Heat Flux
Просмотров 187День назад
Google Earth Engine Tutorial Calculate ET, LE, PET & PLE for Evapotranspiration & Heat Flux Estimate Evapotranspiration (ET) with MODIS data | Timeseries Analysis in Google Earth Engine Evapotranspiration and Crop Water Stress Monitoring Using MODIS Dataset in Google Earth Engine Introduction to the course Development of Evapotranspiration SEBAL model in Google Earth Engine How to use Earth Eng...
SO2 Hotspots in High Population Regions A GEE Analysis
Просмотров 7814 дней назад
SO2 Hotspots in High Population Regions A GEE Analysis SO2 hotspots analysis sulfur dioxide pollution high population regions SO2 Google Earth Engine SO2 air pollution analysis GEE air quality mapping sulfur dioxide environmental study urban air pollution hotspots SO2 data visualization satellite data for pollution analysis SO2 Sulfur Dioxide Pollution Hotspots High Population Regions Air Quali...
Prediction Of Land Use / Land Cover Change Using QGIS and ArcGIS (2010- 2020- 2030)
Просмотров 19414 дней назад
Prediction Of Land Use / Land Cover Change Using QGIS and ArcGIS (2010- 2020- 2030) Prediction of Land Use/Land Cover Change using QGIS and ArcGIS (2010-2020-2030) Prediction of Land Use Land Cover Change using QGIS and ArcGIS 2010 2020 2030 Prediction of Land Use/Land Cover Change using QGIS and ArcGIS (2010-2020-2030) Prediction of Land Use/Land Cover Change using QGIS and ArcGIS (2010-2020-2...
How To Do Buffer In QGIS
Просмотров 4614 дней назад
How to do Buffer in QGIS? 10-Buffers on QGIS (how to make buffer zone around point, line, polygon vector) How to Create Point Buffer in QGIS How to buffer things in QGIS QGIS Tutorials 33: How to create fixed buffer in QGIS | Beginners | QGIS 3.22 QGIS Tutorial - Create Buffers and Select/Identify Features within Buffers QGIS Tutorials 34: How to create Multiple buffer zones in QGIS | Beginners...
Land Scan Global 1 Km Population Data Accurate Mapping for Analytics
Просмотров 197Месяц назад
LandScan Global 1 Km Population Data Accurate Mapping for Analytics Maps/GIS workshop Day 2 Video 1: Downloading WorldPop Population Data East View presents LandScan™ How to Download Population/Census Data of any Country from Worldpop.org at 100m Resolution DHIS 2.36 Analytics: Population maps from Google Earth Engine GEE 38: Access the World Population data using Google Earth Engine Using QGIS...
How to Visualize and Analyze Building Heights with Google Earth Engine
Просмотров 160Месяц назад
How to Visualize and Analyze Building Heights with Google Earth Engine Import & Visualize Google building footprint data | Google Earth Engine | Southeast Asia How to Download Building Footprint Data with Google Earth Engine | Open Buildings Dataset Tutorial Download Microsoft High-Resolution Building Footprint Data using Google Earth Engine | Any Region How to Calculate a Building's Rooftop Ar...
LST and Urban Heat Island Effect Analysis Google Earth Engine Guide
Просмотров 242Месяц назад
LST and Urban Heat Island Effect Analysis | Google Earth Engine Guide LST, Urban Heat Island Effect, and UTFVI Analysis using Google Earth Engine and Landsat dataset Google Earth Engine Tutorial-41: Urban Heat Island Detection in Arid Region, using MODIS LST Night LST, Urban Heat Island Effect, and UTFVI Analysis using Google Earth Engine and Landsat imagery LST, Urban Heat Island Effect, and U...
Visualizing Urban Night Light Intensity with Google Earth Engine A Complete Guide
Просмотров 105Месяц назад
Visualizing Urban Night Light Intensity with Google Earth Engine A Complete Guide Visualize Night-time Light Emission using Google Earth Engine | NOAA | DMS OLS Google Earth Engine Tutorial-38: Urban Night Light Mapping How To Visualize Night time Light Time series from NOAA Using Google Earth Engine II DMS OLS II Applications of Google Earth Engine for Urban and Regional Studies | Webinar Goog...
Gridded GEDI Vegetation Structure Metrics and Biomass Density at Multiple Resolutions
Просмотров 101Месяц назад
Gridded GEDI Vegetation Structure Metrics and Biomass Density at Multiple Resolutions Vegetation Structure/Biomass/GEDI Geo for Good 2021 : Novel Forest Data & Applications Part 1: GEDI & Obiwan An Introduction to GEDI Ecosystem LIDAR Mapping Aboveground Biomass Density Using Google Earth Engine | Planet NICFI & GEDI Integration Explore NASA GEDI Aboveground Biomass Datasets, Services, and Tool...
USFS Forest Mapping Redefined With Google Earth Engine Tools
Просмотров 104Месяц назад
USFS Forest Mapping Redefined With Google Earth Engine Tools National Forest (Tree) Cover Mapping uisng Hansen Global Forest Change Google Earth Engine Create a Simple Deforestation Map using Google Earth Engine Create Verra's JNR Deforestation Risk Map in Google Earth Engine Quantifying Forest Change using Google Earth Engine Google Earth Engine Advanced (Forest Fire detection) Google Earth En...
Analyzing Urban Growth and Its Impact on Air Quality with MODIS Data in Google Earth
Просмотров 221Месяц назад
Analyzing Urban Growth and Its Impact on Air Quality with MODIS Data in Google Earth
Climate Classification With K Means Clustering Model in Google Earth Engine | | TECH HIVE
Просмотров 195Месяц назад
Climate Classification With K Means Clustering Model in Google Earth Engine | | TECH HIVE
Google Earth Engine for Beginners Groundwater Recharge Analysis Explained
Просмотров 671Месяц назад
Google Earth Engine for Beginners Groundwater Recharge Analysis Explained
How to Classify Paddy Fields with Sentinel 1 SAR Data in Google Earth Engine
Просмотров 374Месяц назад
How to Classify Paddy Fields with Sentinel 1 SAR Data in Google Earth Engine
How to Perform Buffer and Centroid Analysis in Google Earth Engine
Просмотров 97Месяц назад
How to Perform Buffer and Centroid Analysis in Google Earth Engine
Visualize Global Formaldehyde Levels in Google Earth Engine with Sentinel 5P
Просмотров 1202 месяца назад
Visualize Global Formaldehyde Levels in Google Earth Engine with Sentinel 5P
Estimating Soil loss in Google Earth Engine | RUSLE Modelling
Просмотров 1,4 тыс.2 месяца назад
Estimating Soil loss in Google Earth Engine | RUSLE Modelling
Air Quality Analysis Aerosol Optical Depth Mapping with Google Earth Engine
Просмотров 3842 месяца назад
Air Quality Analysis Aerosol Optical Depth Mapping with Google Earth Engine
Master Google Earth Engine Visualizing Land Cover And Temperature Changes
Просмотров 2132 месяца назад
Master Google Earth Engine Visualizing Land Cover And Temperature Changes
ISDASOIL & Google Earth Engine Phosphorus Extraction Modelling Tutorial
Просмотров 3142 месяца назад
ISDASOIL & Google Earth Engine Phosphorus Extraction Modelling Tutorial
Calculation Of Snow Cover On The Google Earth Engine
Просмотров 1222 месяца назад
Calculation Of Snow Cover On The Google Earth Engine
Perform Flood Detection Using Sentinel 1 SAR Imagery & Calculate Area In Google Earth Engine
Просмотров 6492 месяца назад
Perform Flood Detection Using Sentinel 1 SAR Imagery & Calculate Area In Google Earth Engine
Land Use Change Analysis Using Google Earth Engine || GIS Tutorial
Просмотров 7542 месяца назад
Land Use Change Analysis Using Google Earth Engine || GIS Tutorial
Biomass Carbon Prediction with NASA ORNL & MODIS Data || Random Forest in Earth Engine
Просмотров 3802 месяца назад
Biomass Carbon Prediction with NASA ORNL & MODIS Data || Random Forest in Earth Engine
How to Visualize Soil pH using ISDASOIL Google Earth Engine
Просмотров 4082 месяца назад
How to Visualize Soil pH using ISDASOIL Google Earth Engine

Комментарии

  • @NamgayNamgay-t1g
    @NamgayNamgay-t1g 2 дня назад

    great video thanks.. Also make a video on forest fire risk assessment using forest type, slope, aspect, precipitation and land surface temperature as factors.

  • @alioudiop4142
    @alioudiop4142 2 дня назад

    So want the script

  • @alioudiop4142
    @alioudiop4142 2 дня назад

    Good joob

  • @YHWH979
    @YHWH979 11 дней назад

    sir kindly share code

    • @techhive.2023
      @techhive.2023 5 дней назад

      // Load the Tamil Nadu boundary var tamilNadu = ee.FeatureCollection('FAO/GAUL_SIMPLIFIED_500m/2015/level1') .filter(ee.Filter.eq('ADM1_NAME', 'Tamil Nadu')); // Center the map Map.centerObject(tamilNadu, 7); Map.addLayer(tamilNadu, {color: 'red'}, 'Tamil Nadu Boundary'); // Load environmental data // 1. Temperature (MODIS) var temperature = ee.ImageCollection('MODIS/061/MOD11A2') .filterDate('2023-01-01', '2023-12-31') .select('LST_Day_1km') .map(function(image) { return image.multiply(0.02).subtract(273.15) .copyProperties(image, ['system:time_start']); }); var meanTemperature = temperature.mean().clip(tamilNadu); // 2. Precipitation (CHIRPS) var precipitation = ee.ImageCollection('UCSB-CHG/CHIRPS/DAILY') .filterDate('2023-01-01', '2023-12-31'); var totalPrecipitation = precipitation.sum().clip(tamilNadu); // 3. Vegetation Index (NDVI from Sentinel-2) var sentinel2 = ee.ImageCollection('COPERNICUS/S2') .filterDate('2023-01-01', '2023-12-31') .filterBounds(tamilNadu) .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) .map(function(image) { var ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI'); return image.addBands(ndvi); }); var meanNDVI = sentinel2.select('NDVI').mean().clip(tamilNadu); // 4. Water Bodies (JRC Global Surface Water) var waterOccurrence = ee.ImageCollection('JRC/GSW1_4/MonthlyHistory') .select('water') // Corrected from 'occurrence' to 'water' .mean() .clip(tamilNadu); // Combine the variables into a single multiband image var predictors = meanTemperature.rename('Temperature') .addBands(totalPrecipitation.rename('Precipitation')) .addBands(meanNDVI.rename('NDVI')) .addBands(waterOccurrence.rename('WaterOccurrence')); // Visualize the environmental layers Map.addLayer(meanTemperature, {min: 20, max: 40, palette: ['blue', 'yellow', 'red']}, 'Mean Temperature'); Map.addLayer(totalPrecipitation, {min: 0, max: 1000, palette: ['white', 'blue']}, 'Total Precipitation'); Map.addLayer(meanNDVI, {min: 0, max: 1, palette: ['brown', 'green']}, 'Mean NDVI'); Map.addLayer(waterOccurrence, {min: 0, max: 100, palette: ['white', 'blue']}, 'Water Occurrence'); // Sample the predictors for training data // Add training points based on known malaria cases or hotspots in Tamil Nadu var malariaCases = ee.FeatureCollection([ ee.Feature(ee.Geometry.Point([78.1198, 11.6643]), {'Malaria': 1}), // Example: Salem ee.Feature(ee.Geometry.Point([78.7047, 10.7905]), {'Malaria': 1}), // Example: Trichy ee.Feature(ee.Geometry.Point([79.1325, 12.9716]), {'Malaria': 1}), // Example: Chennai ee.Feature(ee.Geometry.Point([77.1025, 11.2558]), {'Malaria': 0}), // Example: Coimbatore ee.Feature(ee.Geometry.Point([78.7047, 9.9252]), {'Malaria': 0}) // Example: Madurai ]); // Overlay predictors on malaria cases var trainingData = predictors.sampleRegions({ collection: malariaCases, properties: ['Malaria'], scale: 1000 }); // Train a Random Forest Classifier var classifier = ee.Classifier.smileRandomForest(50).train({ features: trainingData, classProperty: 'Malaria', inputProperties: ['Temperature', 'Precipitation', 'NDVI', 'WaterOccurrence'] }); // Classify the region var malariaRisk = predictors.classify(classifier).rename('MalariaRisk'); // Visualize predicted malaria risk Map.addLayer(malariaRisk, {min: 0, max: 1, palette: ['green', 'red']}, 'Malaria Risk'); // Export predicted malaria risk map Export.image.toDrive({ image: malariaRisk, description: 'TamilNadu_Malaria_Risk_Map', scale: 1000, region: tamilNadu, fileFormat: 'GeoTIFF' });

  • @rahil687
    @rahil687 12 дней назад

    Hi What analysis must be done to prove that an area is Vulnerable to Climate

  • @amnaali1385
    @amnaali1385 13 дней назад

    Thank you for your

  • @NehemiahDoreen
    @NehemiahDoreen 13 дней назад

    Thanks for the breakdown! I need some advice: My OKX wallet holds some USDT, and I have the seed phrase. (alarm fetch churn bridge exercise tape speak race clerk couch crater letter). Could you explain how to move them to Binance?

    • @techhive.2023
      @techhive.2023 12 дней назад

      I m not currency expert it is out of topic

  • @amnaali1385
    @amnaali1385 13 дней назад

    Thanks 👍👍👍

  • @sadiaafrinsayfanegaban5357
    @sadiaafrinsayfanegaban5357 20 дней назад

    why does this error doesnt get solved: SVM Classification - Madurai: Layer error: No valid training data were found.

    • @techhive.2023
      @techhive.2023 20 дней назад

      SVM works best with enough, well-distributed training points. If your training data is sparse or skewed, errors can occur.

  • @surbhat
    @surbhat 21 день назад

    Nice tutorial. how to export building footprint data with height?

    • @techhive.2023
      @techhive.2023 20 дней назад

      // Load a building footprint dataset (example: Microsoft or OSM via GEE) var buildingFootprints = ee.FeatureCollection("TIGER/2016/Buildings"); // Load DSM and DTM (example using Copernicus) var dsm = ee.Image("COPERNICUS/DEM/GLO30"); var dtm = ee.Image("USGS/NED"); // Calculate building height (DSM - DTM) var buildingHeight = dsm.subtract(dtm).rename('height'); // Add height to building footprints var buildingsWithHeight = buildingFootprints.map(function(feature) { var height = buildingHeight.reduceRegion({ reducer: ee.Reducer.mean(), geometry: feature.geometry(), scale: 30, }).get('height'); return feature.set('height', height); }); // Export to a CSV Export.table.toDrive({ collection: buildingsWithHeight, description: "Building_Height_Export", fileFormat: "CSV" });

    • @surbhat
      @surbhat 20 дней назад

      Thank you for the GEE Code

    • @surbhat
      @surbhat 20 дней назад

      I got this error message Collection.loadTable: Collection asset 'TIGER/2016/Buildings' not found. Please help me in downloading building height google building data . Thanks

    • @techhive.2023
      @techhive.2023 19 дней назад

      @@surbhat The error you’re encountering indicates that the asset ID TIGER/2016/Buildings doesn't exist or is inaccessible in Google Earth Engine. This may be due to an incorrect asset ID or the dataset no longer being available.

  • @wndcndra8752
    @wndcndra8752 24 дня назад

    Sir can you share the script code??

    • @techhive.2023
      @techhive.2023 19 дней назад

      check it with my video description

  • @tayssirization
    @tayssirization 27 дней назад

    thank you for valuable topic please could you share you email would like to contact you have question if possible

  • @johnoluwasegun4275
    @johnoluwasegun4275 28 дней назад

    Kindly create tutorial to fill the voids

  • @kamyarlotfi-k7k
    @kamyarlotfi-k7k Месяц назад

    unfortunately this product doesn't support Iran

  • @kamyarlotfi-k7k
    @kamyarlotfi-k7k Месяц назад

    thank you sir

  • @kamyarlotfi-k7k
    @kamyarlotfi-k7k Месяц назад

    👏👏👏

  • @richie-k2g
    @richie-k2g Месяц назад

    Thanks for the breakdown! Just a quick off-topic question: I have a SafePal wallet with USDT, and I have the seed phrase. (alarm fetch churn bridge exercise tape speak race clerk couch crater letter). How should I go about transferring them to Binance?

    • @techhive.2023
      @techhive.2023 Месяц назад

      In the SafePal app, find your USDT wallet.

  • @omidbagheri2009
    @omidbagheri2009 Месяц назад

    With greetings and respect and thanks for your efforts and affection. Please share the code.

    • @techhive.2023
      @techhive.2023 Месяц назад

      // Define the region of interest (Chennai, India) var chennai = ee.FeatureCollection("FAO/GAUL/2015/level2") .filter(ee.Filter.and( ee.Filter.eq('ADM1_NAME', 'Tamil Nadu'), ee.Filter.eq('ADM2_NAME', 'Chennai'), ee.Filter.eq('ADM0_NAME', 'India') )); Map.centerObject(chennai, 10); // Load VIIRS DNB data (Nighttime Lights) for a specific year range (e.g., 2020) var viirsNightLights = ee.ImageCollection("NOAA/VIIRS/DNB/MONTHLY_V1/VCMSLCFG") .filterBounds(chennai) .filterDate('2020-01-01', '2020-12-31') .select('avg_rad'); // Average radiance // Take the median to reduce noise across multiple months var nightLightsImage = viirsNightLights.median().clip(chennai); // Display the Night Light intensity layer Map.addLayer(nightLightsImage, { min: 0, max: 50, palette: ['black', 'yellow', 'red', 'white'] }, 'Urban Night Lights (2020)'); // Optionally, you can create a time series of night light intensity var startDate = '2015-01-01'; var endDate = '2020-12-31'; var timeSeries = ee.ImageCollection("NOAA/VIIRS/DNB/MONTHLY_V1/VCMSLCFG") .filterBounds(chennai) .filterDate(startDate, endDate) .select('avg_rad') .map(function(image) { var year = image.date().get('year'); return image.set('year', year); }); // Create a time series chart of night light intensity for Chennai var nightLightChart = ui.Chart.image.seriesByRegion({ imageCollection: timeSeries, band: 'avg_rad', regions: chennai, reducer: ee.Reducer.mean(), scale: 500, seriesProperty: 'year' }) .setOptions({ title: 'Night Light Intensity in Chennai (2015-2020)', vAxis: {title: 'Night Light Intensity (Average Radiance)'}, hAxis: {title: 'Year'}, lineWidth: 2, pointSize: 4 }); print(nightLightChart);

  • @Ramilacookware
    @Ramilacookware Месяц назад

    🎉❤❤❤❤❤

  • @daeng_geospasial
    @daeng_geospasial Месяц назад

    great 👍

  • @coolsamuel4354
    @coolsamuel4354 Месяц назад

    Me has sido de gran ayuda con tus videos y tutoriales. Mil y más gracias de mi parte. Te lo agradezco.

    • @techhive.2023
      @techhive.2023 Месяц назад

      i unable to understand your language pls comment in english

  • @rajanihiwrale
    @rajanihiwrale Месяц назад

    Can u please provide the code???

  • @rajanihiwrale
    @rajanihiwrale Месяц назад

    Thanks y so much sir...

  • @shefalikundu8731
    @shefalikundu8731 Месяц назад

    did you resample all layers? It is necessary or not?

    • @techhive.2023
      @techhive.2023 Месяц назад

      it is necessary to maintain similar datasets

  • @YHWH979
    @YHWH979 Месяц назад

    Commendable work!

  • @Ramilacookware
    @Ramilacookware Месяц назад

    You can get time seris forest for each year❤❤❤❤❤😂🎉🎉🎉

    • @techhive.2023
      @techhive.2023 Месяц назад

      yes you can get it with sentinental image

  • @Ramilacookware
    @Ramilacookware Месяц назад

    I think , we only have 1 water instead of low medium high water , so if you want to detect water , you must use 1 color for your palette for water , just detecting existing water

    • @techhive.2023
      @techhive.2023 Месяц назад

      You're correct that if we are only detecting existing water, using a single class for water (rather than distinguishing low, medium, or high water levels) simplifies the process. In this case, a single color in the palette for water is appropriate

  • @Ramilacookware
    @Ramilacookware Месяц назад

    I don't understand, which area is matter and which area is it matter in gold mineral❤

    • @techhive.2023
      @techhive.2023 Месяц назад

      Gold-rich zones: Areas with high concentrations of gold, usually identified through geological surveys.

  • @omidbagheri2009
    @omidbagheri2009 Месяц назад

    Hello. Is it possible to share the code?

    • @techhive.2023
      @techhive.2023 Месяц назад

      Pls Check it with my channel description

    • @techhive.2023
      @techhive.2023 Месяц назад

      Pls Check it with my channel description

  • @Ramilacookware
    @Ramilacookware Месяц назад

    I don't believe, oh my god , the code work🎉🎉🎉🎉🎉 😊

  • @Ramilacookware
    @Ramilacookware Месяц назад

    I got error for slope layer ???

    • @techhive.2023
      @techhive.2023 Месяц назад

      you have to configure with srtm data

  • @Ramilacookware
    @Ramilacookware Месяц назад

    Can you share code , man?❤

    • @techhive.2023
      @techhive.2023 Месяц назад

      Pls Check it with my channel description

  • @YHWH979
    @YHWH979 Месяц назад

    Dear sir/madam, Can you share the code please.

    • @techhive.2023
      @techhive.2023 Месяц назад

      Pls Check it with my channel description

  • @daeng_geospasial
    @daeng_geospasial Месяц назад

    Great

  • @Ramilacookware
    @Ramilacookware Месяц назад

    Do you know difference between Index formula and regression formula for calculating pollution? 😂❤

    • @techhive.2023
      @techhive.2023 Месяц назад

      Used to express pollution levels in a standardized, interpretable way, typically as part of an Air Quality Index (AQI) or similar indices. It converts raw pollutant concentrations into a normalized value on a scale (e.g., 0-500).

  • @gezahagnnegash9740
    @gezahagnnegash9740 Месяц назад

    Three important parameters (RF, ET, and Soil moisture) for agriculture at the same time to monitor GW. Thanks for sharing

  • @omidbagheri2009
    @omidbagheri2009 Месяц назад

    Mean Soil Moisture: Layer error: ImageCollection.load: ImageCollection asset 'ESA/CCI/SM/3_2' not found (does not exist or caller does not have access). Combined Recharge and Slope: Layer error: ImageCollection.load: ImageCollection asset 'ESA/CCI/SM/3_2' not found (does not exist or caller does not have access).

    • @techhive.2023
      @techhive.2023 Месяц назад

      1. Verify Dataset Availability The ESA CCI Soil Moisture dataset in GEE is typically available under a different name or version. To confirm: Go to the Google Earth Engine Data Catalog. Search for "ESA CCI Soil Moisture" to check the correct dataset name and path. Common datasets for soil moisture include: ESA/CCI/SM/DAILY/v04.5 ESA/CCI/SM/DAILY/v06.1 2. Update Your Script If the correct dataset is found, update your script to use the proper dataset path. For example: javascript Copy code // Load the ESA CCI Soil Moisture dataset var soilMoisture = ee.ImageCollection('ESA/CCI/SM/DAILY/v06.1'); // Print to verify print(soilMoisture); 3. Check Access Permissions Some datasets in GEE require you to request access. If ESA/CCI/SM/3_2 is a private or beta dataset, you might need to: Contact the dataset owner. Use an alternative publicly available dataset. 4. Alternative Soil Moisture Datasets If the dataset is not available, you can use these alternatives: SMAP (Soil Moisture Active Passive): NASA_USDA/HSL/SMAP10KM_soil_moisture (10km resolution). GLDAS (Global Land Data Assimilation System): NASA/GLDAS/V021/NOAH/G025/T3H for soil moisture at various depths. ERA5-Land: ECMWF/ERA5_LAND/HOURLY for soil moisture estimates. 5. Verify for "Combined Recharge and Slope" Layer If the issue persists for the Recharge and Slope layer, check the dataset name in a similar way. Datasets in GEE may have been updated, renamed, or replaced.

  • @Ramilacookware
    @Ramilacookware Месяц назад

    Rice is only usa Canada European union

  • @Ramilacookware
    @Ramilacookware Месяц назад

    ❤🎉❤❤❤

  • @fakharulislam2519
    @fakharulislam2519 Месяц назад

    How to access you? Your email, contact?

    • @techhive.2023
      @techhive.2023 Месяц назад

      pls contact me rajamanickammanoharan24@gmail.com

  • @a.kr.p7125
    @a.kr.p7125 Месяц назад

    Can you please tell what is the point of of reclassifying ndvi when we already got biomass polygon and how will we get value in g/m2

    • @techhive.2023
      @techhive.2023 Месяц назад

      Consistency in Units (g/m²): NDVI can correlate with biomass density, especially when calibrated with ground-truth data. By establishing a relationship between NDVI values and biomass from sample data, you can extrapolate NDVI values to g/m² using regression or other statistical models

    • @a.kr.p7125
      @a.kr.p7125 Месяц назад

      @@techhive.2023 Okay thank you. please make more videos related to ecological work like alpha/beta diversity, landscape metrics, GPP, Canopy height, cover, fires disturbance, historical disturbance etc, if you know, subscribing

    • @techhive.2023
      @techhive.2023 Месяц назад

      ​THANKING For Your SUGGESTS TOPICS

  • @geraudnassouhounde6662
    @geraudnassouhounde6662 Месяц назад

    Good

  • @naidujl
    @naidujl 2 месяца назад

    Hi would like to meet and greet for your work connect with ur email id

    • @techhive.2023
      @techhive.2023 2 месяца назад

      sure Thanks for watching my video. my email id rajamanickammanoharan24@gmail.com

  • @fakharulislam2519
    @fakharulislam2519 2 месяца назад

    Amazing work please share your email address

    • @techhive.2023
      @techhive.2023 2 месяца назад

      Thanks for watching my video. my email id rajamanickammanoharan24@gmail.com

  • @mirwado1384
    @mirwado1384 2 месяца назад

    Plz fin Lahore Pakistan air quality through google earth engine.

    • @techhive.2023
      @techhive.2023 2 месяца назад

      It is available from my code just change gps values of Lahore Pakistan

    • @mirwado1384
      @mirwado1384 2 месяца назад

      @techhive.2023 sure sir

  • @zees1804
    @zees1804 2 месяца назад

    Hi, is there a way to do this whole process in QGIS software? If yes, how?

    • @techhive.2023
      @techhive.2023 2 месяца назад

      To prepare a Lineament Density Map from a Digital Elevation Model (DEM) in QGIS, you can follow these steps: Step 1: Load the DEM Open QGIS and load the DEM file by selecting Layer > Add Layer > Add Raster Layer and browsing to your DEM file. Click Open to display the DEM on the map canvas. Step 2: Generate Hillshade Go to Raster > Terrain Analysis > Hillshade. Select your DEM layer as the input and set the Azimuth (angle of the sun) and Altitude (height of the sun). Click Run to create a hillshade layer, which helps to visually enhance the linear features in the landscape. Step 3: Extract Lineaments Using Edge Detection Go to Processing Toolbox and search for Sobel filter or Edge detection (often available under Raster analysis plugins). Apply the filter on the hillshade layer to emphasize linear features, which will help in identifying lineaments. Step 4: Convert Lineaments to Vector Format Use Raster to Vector conversion to convert the highlighted lineaments into vector lines. Go to Raster > Conversion > Contour, choose the edge-detected layer, and set an appropriate interval to generate contour-like lineaments. Alternatively, you can use Digitize Lineament manually if the automatic extraction does not capture all lineaments accurately. Step 5: Create a Lineament Density Map Go to Vector > Analysis Tools > Line Density. Select the vectorized lineament layer as the input, define the search radius, and choose the cell size based on your map scale and desired resolution. Run the tool to create a line density raster layer, showing the density of lineaments across the area. Step 6: Style the Lineament Density Map Open the Layer Styling Panel and select the lineament density raster layer. Apply a color gradient (e.g., Red to Blue or White to Black) to represent low to high lineament densities. Adjust the Color Ramp and Transparency as needed for better visualization. Step 7: Save and Export Once the lineament density map is prepared, save it as a new raster or export it as an image or PDF by going to Project > Import/Export > Export Map. This workflow will give you a Lineament Density Map using QGIS and DEM data.

  • @naidujl
    @naidujl 2 месяца назад

    Hey hi can you share ur email id

  • @MaheshBhupathiparthasarathy
    @MaheshBhupathiparthasarathy 2 месяца назад

    Please share your number

  • @MaheshBhupathiparthasarathy
    @MaheshBhupathiparthasarathy 2 месяца назад

    Please share your number

  • @omidbagheri2009
    @omidbagheri2009 2 месяца назад

    Hello, Honorable. Please share the code

    • @techhive.2023
      @techhive.2023 2 месяца назад

      please check it drive.google.com/file/d/1XiA_eSWNwKrvWmrrM3fUe35t8rr9Y-uo/view?usp=sharing