Biobots. The next generation of swimming living robots

Поделиться
HTML-код
  • Опубликовано: 21 апр 2021
  • Researchers at the Institute for Bioengineering of Catalonia (IBEC) led by Samuel Sánchez achieve a breakthrough in the field of biological robots by developing new biobots based on muscle cells that can swim at unprecedented velocities.
    Robotics field aims at mimicking what natural biological entities have achieved throughout millennia of evolution - actions like moving, adapting to the environment, or sensing. Beyond traditional rigid robots, the field of soft robotics has recently emerged using compliant, flexible materials capable to adapt to their environment more efficiently than rigid ones. With this goal in mind, scientists have been working for years in the so-called biohybrid robots or biobots, generally composed of muscle tissue, either cardiac or skeletal, and an artificial scaffold, achieving crawling, grasping or swimming living robots. Unfortunately, current biobots were far to emulate the performance of natural entities in terms of mobility and strength.
    Now, researchers at the Institute for Bioengineering of Catalonia (IBEC) led by ICREA Research Professor Samuel Sánchez have overcome both challenges and achieved a breakthrough in the field of biobots by using bioengineering tools. Sánchez and his colleagues at IBEC have applied 3D bioprinting and engineering design for the development of biobots at the cm range that can swim and coast like fishes, with unprecedented velocities. The key: to use the spontaneous contraction of muscle cells-based materials with a very special compliant skeleton.

Комментарии •