Размер видео: 1280 X 720853 X 480640 X 360
Показать панель управления
Автовоспроизведение
Автоповтор
There's a shortcut:(x + 1)⁶ = 2⁶x = 2*r6 - 1 , where r6 is the six 6th roots of 1r6 = ±1, ±1/2 ± i*√3/22*r6 = ±2, ±1 ± i*√3x = 2*r6 - 1 = 1, -3, ±i*√3, -2 ± i*√3
Thanks for sharing your method and support 💕🙏🙏💡✅
(x+1)^3 = - 8 , (x+1)^3 = 8Case 1 x^3+3x^2+3x+9 = 0(x+3)(x^2+3) = 0x = - 3 , i√3 , -i √3Case 2 (x+1)^3 - 2^3 = 0(x - 1)(x^2+2x+1+4+2x+2) = 0(x - 1) (x^2+4 x+7) = 0x = 1 , - 2+i√3 , - 2 - i√3
Yes ... or ... (x + 1)⁶ = 64 (x + 1)⁶ = 2⁶ (x + 1)⁶ - 2⁶ = 0 set k = x + 1 k⁶ - 2⁶ = 0 (k³)² - (2³)² = 0 (k³ - 2³)·(k³ + 2³) = 0 (k - 2)·(k² + 2k + 4)·(k + 2)·(k² - 2k + 4) --- /// cases: (k - 2) = 0 and (k + 2) = 0 root #1: k - 2 = 0 => k = 2 => x + 1 = 2 => ■ x = 1 root #2: k + 2 = 0 => k = -2 => x + 1 = -2 => ■ x = -3 --- /// case: (k² + 2k + 4) = 0 k² + 2k + 4 = 0 Δ = 2² - 4·1·4 = 4 - 16 = -12 √Δ = ±i√12 = ±2i√3 • k = (-2 + 2i√3/(2·1) = -1 + i√3 • k = (-2 - 2i√3/(2·1) = -1 - i√3 root #3: k = -1 + i√3 => x + 1 = -1 + i√3 => ■ x = -2 + i√3 root #4: k = -1 - i√3 => x + 1 = -1 - i√3 => ■ x = -2 - i√3 --- /// case: (k² - 2k + 4) = 0 k² - 2k + 4 = 0 Δ = (-2)² - 4·1·4 = 4 - 16 = -12 √Δ = ±i√12 = ±2i√3 • k = (-(-2) + 2i√3/(2·1) = 1 + i√3 • k = (-(-2) - 2i√3/(2·1) = 1 - i√3 root #5: k = 1 + i√3 => x + 1 = 1 + i√3 => ■ x = i√3 root #6: k = 1 - i√3 => x + 1 = 1 - i√3 => ■ x = -i√3 --- /// final results: ■ root #1: x = 1 ■ root #2: x = -3 ■ root #3: x = -2 + i√3 ■ root #4: x = -2 - i√3 ■ root #5: x = i√3 ■ root #6: x = -i√3🙂
Nice solutions. Thanks for your feedback and sharing 👏🙏😎💯 method
There's a shortcut:
(x + 1)⁶ = 2⁶
x = 2*r6 - 1 , where r6 is the six 6th roots of 1
r6 = ±1, ±1/2 ± i*√3/2
2*r6 = ±2, ±1 ± i*√3
x = 2*r6 - 1 = 1, -3, ±i*√3, -2 ± i*√3
Thanks for sharing your method and support 💕🙏🙏💡✅
(x+1)^3 = - 8 , (x+1)^3 = 8
Case 1
x^3+3x^2+3x+9 = 0
(x+3)(x^2+3) = 0
x = - 3 , i√3 , -i √3
Case 2
(x+1)^3 - 2^3 = 0
(x - 1)(x^2+2x+1+4+2x+2) = 0
(x - 1) (x^2+4 x+7) = 0
x = 1 , - 2+i√3 , - 2 - i√3
Yes ... or ...
(x + 1)⁶ = 64
(x + 1)⁶ = 2⁶
(x + 1)⁶ - 2⁶ = 0
set k = x + 1
k⁶ - 2⁶ = 0
(k³)² - (2³)² = 0
(k³ - 2³)·(k³ + 2³) = 0
(k - 2)·(k² + 2k + 4)·(k + 2)·(k² - 2k + 4)
---
/// cases: (k - 2) = 0 and (k + 2) = 0
root #1: k - 2 = 0 => k = 2 => x + 1 = 2 => ■ x = 1
root #2: k + 2 = 0 => k = -2 => x + 1 = -2 => ■ x = -3
---
/// case: (k² + 2k + 4) = 0
k² + 2k + 4 = 0
Δ = 2² - 4·1·4 = 4 - 16 = -12
√Δ = ±i√12 = ±2i√3
• k = (-2 + 2i√3/(2·1) = -1 + i√3
• k = (-2 - 2i√3/(2·1) = -1 - i√3
root #3: k = -1 + i√3 => x + 1 = -1 + i√3 => ■ x = -2 + i√3
root #4: k = -1 - i√3 => x + 1 = -1 - i√3 => ■ x = -2 - i√3
---
/// case: (k² - 2k + 4) = 0
k² - 2k + 4 = 0
Δ = (-2)² - 4·1·4 = 4 - 16 = -12
√Δ = ±i√12 = ±2i√3
• k = (-(-2) + 2i√3/(2·1) = 1 + i√3
• k = (-(-2) - 2i√3/(2·1) = 1 - i√3
root #5: k = 1 + i√3 => x + 1 = 1 + i√3 => ■ x = i√3
root #6: k = 1 - i√3 => x + 1 = 1 - i√3 => ■ x = -i√3
---
/// final results:
■ root #1: x = 1
■ root #2: x = -3
■ root #3: x = -2 + i√3
■ root #4: x = -2 - i√3
■ root #5: x = i√3
■ root #6: x = -i√3
🙂
Nice solutions. Thanks for your feedback and sharing 👏🙏😎💯 method