Can you Pass Oxford University Admission Exam ? | Find x=?

Поделиться
HTML-код
  • Опубликовано: 21 ноя 2024

Комментарии • 6

  • @oahuhawaii2141
    @oahuhawaii2141 2 дня назад +1

    There's a shortcut:
    (x + 1)⁶ = 2⁶
    x = 2*r6 - 1 , where r6 is the six 6th roots of 1
    r6 = ±1, ±1/2 ± i*√3/2
    2*r6 = ±2, ±1 ± i*√3
    x = 2*r6 - 1 = 1, -3, ±i*√3, -2 ± i*√3

    • @superacademy247
      @superacademy247  2 дня назад

      Thanks for sharing your method and support 💕🙏🙏💡✅

  • @raghvendrasingh1289
    @raghvendrasingh1289 3 дня назад +1

    (x+1)^3 = - 8 , (x+1)^3 = 8
    Case 1
    x^3+3x^2+3x+9 = 0
    (x+3)(x^2+3) = 0
    x = - 3 , i√3 , -i √3
    Case 2
    (x+1)^3 - 2^3 = 0
    (x - 1)(x^2+2x+1+4+2x+2) = 0
    (x - 1) (x^2+4 x+7) = 0
    x = 1 , - 2+i√3 , - 2 - i√3

  • @GillesF31
    @GillesF31 3 дня назад

    Yes ... or ...
    (x + 1)⁶ = 64

    (x + 1)⁶ = 2⁶

    (x + 1)⁶ - 2⁶ = 0

    set k = x + 1

    k⁶ - 2⁶ = 0

    (k³)² - (2³)² = 0

    (k³ - 2³)·(k³ + 2³) = 0

    (k - 2)·(k² + 2k + 4)·(k + 2)·(k² - 2k + 4)

    ---

    /// cases: (k - 2) = 0 and (k + 2) = 0

    root #1: k - 2 = 0 => k = 2 => x + 1 = 2 => ■ x = 1

    root #2: k + 2 = 0 => k = -2 => x + 1 = -2 => ■ x = -3

    ---

    /// case: (k² + 2k + 4) = 0

    k² + 2k + 4 = 0

    Δ = 2² - 4·1·4 = 4 - 16 = -12

    √Δ = ±i√12 = ±2i√3

    • k = (-2 + 2i√3/(2·1) = -1 + i√3

    • k = (-2 - 2i√3/(2·1) = -1 - i√3

    root #3: k = -1 + i√3 => x + 1 = -1 + i√3 => ■ x = -2 + i√3

    root #4: k = -1 - i√3 => x + 1 = -1 - i√3 => ■ x = -2 - i√3

    ---

    /// case: (k² - 2k + 4) = 0

    k² - 2k + 4 = 0

    Δ = (-2)² - 4·1·4 = 4 - 16 = -12

    √Δ = ±i√12 = ±2i√3

    • k = (-(-2) + 2i√3/(2·1) = 1 + i√3

    • k = (-(-2) - 2i√3/(2·1) = 1 - i√3

    root #5: k = 1 + i√3 => x + 1 = 1 + i√3 => ■ x = i√3

    root #6: k = 1 - i√3 => x + 1 = 1 - i√3 => ■ x = -i√3

    ---

    /// final results:

    ■ root #1: x = 1
    ■ root #2: x = -3
    ■ root #3: x = -2 + i√3
    ■ root #4: x = -2 - i√3
    ■ root #5: x = i√3

    ■ root #6: x = -i√3
    🙂

    • @superacademy247
      @superacademy247  3 дня назад

      Nice solutions. Thanks for your feedback and sharing 👏🙏😎💯 method