Can you Pass Engineering Admission Exam from Harvard University ?

Поделиться
HTML-код
  • Опубликовано: 21 ноя 2024

Комментарии • 15

  • @raghvendrasingh1289
    @raghvendrasingh1289 2 дня назад +3

    11 is a prime number = 6+5
    ( Difference should be one , for example 17 = 9+8 ,13 = 7+6 etc.)
    9 x^4 - 60 x +36 -25 = 0
    9 x^4 +36 = 60 x + 25
    (3x^2+6)^2 = 36 x^2 + 60 x + 25
    (3x^2 + 6)^2 = (6 x+5)^2
    (3x^2+6 x+11) (3x^2 - 6 x +1) = 0
    Now we can use quadratic formula to get roots.
    This method generally works for equation ax^4+bx+c = 0
    provided 'a' is perfect square.

    • @superacademy247
      @superacademy247  2 дня назад

      That's a great solution for this specific problem! 🤩💪This is a clever approach! Thanks for sharing your perspective. 🙏💯

    • @билал-ж2к
      @билал-ж2к 2 дня назад

      Великолепное решение!!!❤

  • @mrflibble5717
    @mrflibble5717 День назад +1

    Excellent!

    • @superacademy247
      @superacademy247  День назад

      I'm glad you enjoyed the video! 😁💯💕😎🙏Thanks for the kind words! 😊

  • @kareolaussen819
    @kareolaussen819 2 дня назад +1

    Rewrite the equation as
    (3x^2+p)^2 = 6px^2 + 60 x + p^2 -11,
    and require the right hand side to be a perfect square in x. This requires the discriminant to vanish:
    ∆ = 60^2 - 4*6p*(p^2-11) = 0, or
    p^3 - 11 p - 150 = 0
    Since we suspect the original x-equation to be factorisable over the integers, we first check if p=6 is a solution to this p-equation. It is! Hence we can rewrite the original equation as
    (3x^2 + 6)^2 - (6x+5)^2 =
    (3x^2 + 6x+11) (3x-1)^2 = 0.

    • @superacademy247
      @superacademy247  День назад

      Thanks for your shortcut 🙏👏💡😎💕💯

  • @ShriH-d1o
    @ShriH-d1o 2 дня назад +1

    Let E= (3x^2)^2-60x+11=(3x^2+ax+p)(3x^2+bx+q);=> pq=11;=> p=11& q=1: => b=-a as x^3 =0; =>11bx+ax=-60x; =>a=6(b=-a);=> E=(3x^2+6x+11)(3x^2 -6x+1)

    • @davidseed2939
      @davidseed2939 День назад

      can every quartic with no x³ term be expressed as the product of matching quadratics

    • @ShriH-d1o
      @ShriH-d1o День назад

      @davidseed2939
      Yes. eg. For(x^2+ax+p)(x^2+bx+q) > x^3 term is ax(x^2)+bx(x^2)= (a+b)x^3 & if no x^3 term then (a+b)=0=>b= -a .

    • @Jjsksskyndo
      @Jjsksskyndo 14 часов назад

      182.19

  • @matheusivanmedinaramirez772
    @matheusivanmedinaramirez772 День назад +1

    A can't understand the step on 4:28, explain me please!

    • @superacademy247
      @superacademy247  19 часов назад +1

      It's based on completing the square method in which we take half the coefficient of the middle term then we square it. Hope this explanation helps💪✅💕💯🤗🤩

  • @moonmissionpassagetototali1952
    @moonmissionpassagetototali1952 День назад +1

    Horribly tortured algebra. Is this an admissions test or a torture chamber?☠️⚰️

    • @superacademy247
      @superacademy247  День назад

      I'll consider coming up with a nice method in a few steps . 🤣🤣🤣