Argentina | A Nice Algebra Problem | Math Olympiad

Поделиться
HTML-код
  • Опубликовано: 24 ноя 2024

Комментарии • 7

  • @Quest3669
    @Quest3669 4 дня назад +3

    49- 9= 40 gives √ x = 4 hence x= 16 +z

  • @9허공
    @9허공 4 дня назад +1

    4:53 How do you derive a and b are integers?

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 3 дня назад +1

    40=49-9
    =[sqrt(7)]⁴-[sqrt(3)]⁴
    Therefore sqrt(x)=4 --> x=16

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 3 дня назад +1

    Sqrt[7]^Sqrt[16]-Sqrt[3]^Sqrt[16]=40 X=16 final answer

  • @meirlev8498
    @meirlev8498 3 дня назад

    For which class? If for the elder, then prove that the function 7^x-3^x increases monotonously - if you want algebraically, you want through a derivative. And the answer 49-9=40 is obvious.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 4 дня назад

    {49 ➖ 9}=40 2^20 2^10 2^2^5 1^2^1 2^1 (x ➖ 2x+1).

  • @walterwen2975
    @walterwen2975 4 дня назад

    Argentina, Math Olympiad: (√7)^√x - (√3)^√x = 40, x ϵ ℤ; x =?
    (√7)^√x - (√3)^√x = 40 = 49 - 9 = 7^2 - 3^2 = (√7)^4 - (√3)^4 = (√7)^√16 - (√3)^√16
    x = 16