Hyperbolic Geometry

Поделиться
HTML-код
  • Опубликовано: 12 ноя 2024

Комментарии • 17

  • @BriTheMathGuy
    @BriTheMathGuy  Год назад +15

    Watch the Full Video for more Amazing Math Facts!
    ruclips.net/video/LWe2coj6ES8/видео.html

  • @aawiggins314159
    @aawiggins314159 Год назад +39

    I explain this in my geometry class just so they can see there are others than just flat space.

    • @sumdumbmick
      @sumdumbmick 8 месяцев назад

      that's the greatest story I've ever heard. can you tell it again?

    • @aawiggins314159
      @aawiggins314159 8 месяцев назад +3

      @@sumdumbmick let’s try the surface of the earth as a starter

  • @sumdumbmick
    @sumdumbmick 8 месяцев назад +9

    when you think Euclid wasn't aware of the shape of an amphora...

    • @sumdumbmick
      @sumdumbmick 8 месяцев назад

      drive.google.com/file/d/1UxvspGOq7w5UzBHWGWLqzw80tbwR5KpN/view?usp=drive_link

  • @Xenon19387
    @Xenon19387 Год назад +10

    This guy sounds just like Mark Rober

    • @hisky.
      @hisky. 11 месяцев назад +1

      yes !

  • @443MoneyTrees
    @443MoneyTrees 11 месяцев назад +3

    Bro non Euclidean spacetime

  • @francescocorrenti5135
    @francescocorrenti5135 Год назад +8

    Cool

  • @snacku7
    @snacku7 2 месяца назад

    Pringles chips!?

  • @ssaamil
    @ssaamil Год назад +1

    Huh I was just thinking about this today haha

  • @wmpowell8
    @wmpowell8 Год назад +1

    If you have a line and a point not on the line in hyperbolic geometry you can draw infinitely many lines that pass through the point and don’t intersect the other line as supposed to just one in Euclidean geometry or none in spherical geometry

    • @CristhianDebarros
      @CristhianDebarros Год назад +2

      Ok , but the approach is much more general . a Euclidean-geometry establishes how a line has a bounded limit in the plane. Here, for example, the isomorphism of $S^{n}\times{} R^{2}$ is studied. But in non-Euclidean geometries the lines do not coincide with $S^{n}$ , rather it is "projective" with $S^{4}$ (as if instead of lines we were projecting a genus $g$)

  • @Zettabyte420
    @Zettabyte420 Год назад +5

    FIRST