Can you find area of the Green shaded triangle? | (Circle) |

Поделиться
HTML-код
  • Опубликовано: 31 дек 2024

Комментарии •

  • @luigipirandello5919
    @luigipirandello5919 5 месяцев назад +3

    Geometry is beautiful.

    • @PreMath
      @PreMath  5 месяцев назад

      Glad to hear that!
      Thanks for the feedback ❤️

  • @santokhsidhuatla7045
    @santokhsidhuatla7045 5 месяцев назад +7

    Area of circle= pi *r^2=49pi
    r=49^1/2=7
    Half chord=(8+5)/2=6.5
    Perpendicular =7^2-6.5^2=p^2
    P=2.598
    Green area=1/2 x 2.598 x 1.5=
    =1.9485 square units

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @quigonkenny
    @quigonkenny 5 месяцев назад +2

    Circle O:
    Aₒ = πr²
    49π = πr²
    r² = 49
    r = √49 = 7
    As ∠OTP = 90° and AB is a chord, OT bisects AB amd AT = TB = (8+5)/2 = 13/2. As TB = 13/2 and PB = 5, TP = 13/2-5 = 3/2.
    Draw radius OB.
    Triangle ∆OTB:
    OT² + TB² = OB²
    OT² + (13/2)² = 7²
    OT² = 49 - 169/4 = 27/4
    OT = √(27/4) = (3√3)/2
    Triangle ∆OTP:
    Aᴛ = bh/2 = (3/2)((3√3)/2)/2 = (9√3)/8 ≈ 1.95 sq units

  • @Uber308
    @Uber308 5 месяцев назад +10

    AO = 7, AT=6.5 then TO=2.6 no need to find OP.

  • @egillandersson1780
    @egillandersson1780 5 месяцев назад +1

    Another approach : consider the triangle ABO, whose sides are all known (7, 7 and 13) and calculate his area by Heron's formula. Then, you get the height OT, as you know the area and the correspondant base (13).

  • @AmirgabYT2185
    @AmirgabYT2185 5 месяцев назад +10

    S=9√3/8≈1,95

    • @PreMath
      @PreMath  5 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

    • @denisrenaldo3506
      @denisrenaldo3506 5 месяцев назад +1

      Yes, you’re right and more precise. I don’t like to use approximate figures and carry on in future computing. Here, OT = 3 sqrt (3) /2 and finally S = 9 sqrt (3) /4 as you mentioned.

  • @marioalb9726
    @marioalb9726 5 месяцев назад +1

    Radious of circle:
    A = πR² = 49π cm²
    R= 7 cm
    Chord:
    c = 8+5 = 13 cm
    ½c = 6,5 cm
    Intersecting chords theorem:
    (R+h)(R-h) = (½c)²
    R² - h² = (½c)²
    h² = 7² - 6,5² = 6,75
    h = 2,598 cm
    Area of green triangle:
    A = ½ b.h
    A = ½ (6,5-5) . 2,598
    A = 1,9486 cm² ( Solved √ )

  • @ОльгаСоломашенко-ь6ы
    @ОльгаСоломашенко-ь6ы 5 месяцев назад +2

    ∆ AOB равнобедренный, значит высота является медианой. BT=(8+5)/2=6,5, PT=6,5-5=1.5. OR=√7^2-6.5^2=√6,75. S=1.5*√6.75/2=1,948

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l 5 месяцев назад +1

    First comments mashallah very nice sharing sir❤❤

    • @PreMath
      @PreMath  5 месяцев назад

      Thanks for liking

  • @marcgriselhubert3915
    @marcgriselhubert3915 5 месяцев назад +1

    The radius of the circle is R = OA = 7
    AT = TB = (AP +PB)/2 = 13/2
    In triangle OAT: OT^2 = OA^2 - AT^2 = 49 - 169/4 = 27/4,
    so OT = (3/2).sqrt(3)
    TP = TB - PB = 13/2 - 5 = 3/2
    The green area is (1/2).OT.TP = (1/2).((3/2).sqrt(3)).(3/2)
    = (9/8).sqrt(3).
    That was very easy.

  • @maxhagenauer24
    @maxhagenauer24 5 месяцев назад

    First, the area of the circle is 49*pi so radius is 7.
    Now call the base "b" and height "h" of the triangle. Construct line from O to A and a line from O to B so you have 2 right triangles. Then we have:
    (8 - b)^2 + h^2 = 7^2
    (5 + b)^2 + h^2 = 7^2
    So we get b = 3/2, h = 3 * sqrt(3) / 2. Area of the triangle is 1/2 * b * h = 1/2 * ( 3/2 ) * ( 3 * sqrt(3) / 2 ) = 9 * sqrt(3) / 8 or about 1.949.

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 5 месяцев назад

    That’s very good
    Nice and wonderful method
    Thanks Sir
    ❤❤❤❤❤

  • @giuseppemalaguti435
    @giuseppemalaguti435 5 месяцев назад

    OP^2=h^2+1,5^2=5^2+r^2-2*5*r*cos(arccos6,5/r)..legge del coseno .=25+49-70*6,5/7=9..h=9-2,25=6,75..h=√6,75...Agreen=√6,75*1,5/2=9√3/8

  • @ashutoshkumardalei3264
    @ashutoshkumardalei3264 5 месяцев назад

    Fantabulous hands up to your efforts ❤

  • @als2cents679
    @als2cents679 5 месяцев назад

    T is the midpoint of AB, so [TP] = [TB] - [PB] = (8 + 5) / 2 - 5 = 3/2
    By Pythagoras [TO]^2 = [AO]^2 - [TP]^2 = 7^2 - (13/2)^2
    Area of triangle TOP = (1/2) [TP] [TO] = (1/2) (3/2) (sqrt(49 - 169/4)) = 3 * sqrt(27/4) / 4 = 9 sqrt(3) / 8
    Area of triangle TOP = 1.948557 square units

  • @montynorth3009
    @montynorth3009 5 месяцев назад +1

    Radius OB = 7 as calculated.
    AB length = 8 + 5 = 13.
    T is the centre of line AB.
    TB = ( 8 + 5 ) / 2 = 6.5.
    Therefore TP = 6.5 - 5 = 1.5.
    Joining points O & B.
    OT^2 = OB^2 - TB^2 by Pythagoras.
    OT^2 = 7^2 - 6.5^2.
    OT = 2.598.
    Area of green triangle = 1/2 x 1.5 x 2.598.
    1.95.( correct to 2 decimal places).

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @jamestalbott4499
    @jamestalbott4499 5 месяцев назад +1

    Thank you!

    • @PreMath
      @PreMath  5 месяцев назад

      You're welcome!
      Thanks for the feedback ❤️

  • @AdemolaAderibigbe-j8s
    @AdemolaAderibigbe-j8s 5 месяцев назад +1

    Let's solve this using an intersecting chords approach. If the circle radius is r then pi*r^2 = 49*pi so r = 7. Now chord AB = 13 and since OT is perpendicular to AB, T is the midpoint of AB and AT = 6.5 and TP = AP - AT = 8 - 6.5 = 1.5. Next we use the intersecting chords formula AT*TB = (r + TO)(2r -(r +TO)). We substitute r =7 to get (13/2)^2 = 49 - TO^2 so TO is 3*sqrt(3)/2 and the area of the triangle is (1/2)*TP*TO = (1/2)*(3/2)*(3*sqrt(3)/2) = (9/8)*sqrt(3) = 1.9485 square units.

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @santiagoarosam430
    @santiagoarosam430 5 месяцев назад +1

    49π=πr²→ r=7 → 7²-[(8+5)/2]²=h²→ h=3√3/2 ; b=(13/2)-5=3/2 → Área triángulo verde =bh/2 =(1/2)(3/2)(3√3/2)=9√3/8 =1,948557......ud².
    Gracias y un saludo cordial.

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @juanalfaro7522
    @juanalfaro7522 5 месяцев назад

    Area = 49*Pi = Pi*R^2 ->R=7. Now find OP=x using intersecting chord theorem at P. [7+x] * [7-x] = 8*5 = 40 = 49-x^2 -> x^2 = 9 -> x=3. Now find OT=y and TP=z. y^2 + (8-z) ^2 = 7^2 -> y^2 + 8^2 - 16*z + z^2 = 8^2 + 16*z + 3^2 (since y^2 + z^2 = x^2 = 3^2) -> 49 = 64 + 9 - 16*z -> 16z = 64+9-49 = 24 -> z=3/2. Now y is found by Pythagoras (30-60-90 triangle) to be 3*sqrt (3)/2. Thus [OTP] = OT*TP/2 = y*z/2 = 3*sqrt (3)/2 * 3/2/2 = 9*sqrt (3) / 8 = 1.95 sq. units

  • @MrPaulc222
    @MrPaulc222 5 месяцев назад +1

    r=7
    TP is side a
    TO is side b
    PO is side c
    Chord AB is 13, so AT is 13/2
    49 - (13/2)^2 = b^2
    49 - 169/4 = b^2, so b^2 = 196/4 - 169/4 = 27/4
    b = (3*sqrt(3))/2
    a = 3/2, because AT = TB
    ((3/2)*3*sqrt(3))/4 un^2 is the area of the green triangle.
    ((9/2)*sqrt(3))/4 = (9*sqrt(3))/8 un^2 approximates to 1.949 un^2
    Having now looked at your video, I notice that the green triangle is a 30,60,90.
    Thanks once again.

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      You are very welcome!
      Thanks for the feedback ❤️

  • @TyyylerDurden
    @TyyylerDurden 2 месяца назад

    No need to find OP! We can find OT because OA = 7 and OTA is a right triangle. OT * OT = 7*7 - 6.5*6.5 = 6.75 => OT = ~2.6 => The area of the green triangle = OT(2.6) * (TP)1.5 * 0.5 = ~1.95

  • @sergioaiex3966
    @sergioaiex3966 5 месяцев назад

    OT = a
    TP = 3/2
    Then:
    (7 + a) . (7 - a) = 13/2 . 13/2
    49 - a² = 169/4
    196 - 4a² = 169
    4a² = 27
    a = √(27/4)
    a = 3√3/2
    A = ½ 3/2 . 3√3/2
    A = 9√3/8 Square Units
    A ~= 1,948 Square Units

  • @MaximeDube-wh2zr
    @MaximeDube-wh2zr 5 месяцев назад

    8= √49-(7-x)^2
    5=√49-(7-x)^2
    13/2= √49-(7-x)^2
    x=4.401
    7- 4.401=2.598
    PT=8-6.5=1.5
    A=(1.5)(2.598)/2 = 1.9485

  • @wackojacko3962
    @wackojacko3962 5 месяцев назад +2

    I'm writing an updated version of Euclid's Elements. Gonna plagiarize the whole damn thing...chapter 1, Intersecting Chord Theorem. What could possibly go wrong? 🙂

    • @PreMath
      @PreMath  5 месяцев назад +1

      😀
      Thanks for the feedback ❤️

  • @del66404
    @del66404 5 месяцев назад

    👏👏👏👏👏👏👏👏

  • @draketheduelist
    @draketheduelist 4 месяца назад

    I wondered how you got from sqrt(6.75) to 2.6. You apparently rounded. I've never known a mathematician to round before the final answer. Couldn't you more exactly get the square root of 6.75 by reverting it back into a fraction? 6.75 = 6 + 3/4 = 24/4 + 3/4 = 27/4. And IIRC, sqrt(27/4) = sqrt(27)/sqrt(4), meaning sqrt(6.75) = 3(sqrt(3))/2. Right?
    Therefore, the final exact answer would be 1/2 x 3sqrt(3)/2 x 3/2 = 9sqrt(3)/8.

  • @janolsen7915
    @janolsen7915 5 месяцев назад

    green area is more precise (9*sqrt3)/8 = 1,9486

  • @johnbrennan3372
    @johnbrennan3372 5 месяцев назад

    TP=1.5 and from triangle ATO where AO=7 and AT = 6.5 you can get length of OT etc.

    • @PreMath
      @PreMath  5 месяцев назад

      Thanks for the feedback ❤️

  • @Abdelfattah-hr8tt
    @Abdelfattah-hr8tt 19 дней назад

    Thanks from Morocco

  • @prossvay8744
    @prossvay8744 5 месяцев назад +1

    Circle area=49π
    so πr^2=49π
    r=7
    Connect O to A
    In ∆ OAT
    OT^2+AT^2=OA^2
    OT^2+(6.5)^2=7^2
    So OT=3√3/2
    PT=BT-BP=6.5-5=1.5
    So Green triangle area=1/2(3√3/2)(1.5)=9√3/8=1.95 square units.❤❤❤

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @himo3485
    @himo3485 5 месяцев назад

    r*r*π=49π r=7
    TO=x TP=y
    x²+(8-y)²=7² x²+(5+y)²=7²
    x²+(8-y)²=x²+(5+y)²       x²+64-16y+y²=x²+25+10y+y² 26y=39 y=3/2 x²=27/4   x=3√3/2
    Green Triangle area = 3√3/2*3/2*1/2 = 9√3/8

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @GenilsondaSilva
    @GenilsondaSilva 5 месяцев назад

    If AT = 8 and AO = 7, then hypothenuse is smaller then cathetus?

  • @nenetstree914
    @nenetstree914 5 месяцев назад +1

    √3*(9/8)

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @gaylespencer6188
    @gaylespencer6188 5 месяцев назад +1

    Since we know the radius is 7, I used two Pythagorean formulas to find x (= the distance from T to P).
    (8-x) and (5+x), where TO is the common side to both formulas.

  • @kalavenkataraman4445
    @kalavenkataraman4445 5 месяцев назад +1

    1.95 Sq.units

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @billferrol4202
    @billferrol4202 5 месяцев назад

    If you use Pythagoras' theorem on triangle OTA you get OT^2+TA^2=AO^2 where AO=r=7,TA=13/2, OT is therefore√(r^2-13/2^2). =√(49-169/4) = √(196/4-169/4) =√(27/4) =(3√3)/2 ≈ 2.59808.
    Using that then the area of the green triangle =1/2(OT)(TP) ≈ 1.94856. Not the exact number 1.95 using OT=2.6
    Ok, it's about 0.99926% out but almost 1% could be a problem in other areas - you would come up short of, or overshot Mars by almost 1.5 million miles.😂

    • @PreMath
      @PreMath  5 месяцев назад

      Thanks for the feedback ❤️

  • @DB-lg5sq
    @DB-lg5sq Месяц назад

    OA=7
    AT=8
    AT < OA
    ???

  • @cyruschang1904
    @cyruschang1904 5 месяцев назад

    This is not possible. If the area of the circle is 49π, the radius is 7. OA = r = 7, but 7 < AT = 8

    • @ericb5634
      @ericb5634 5 месяцев назад +1

      I was following along with this but the blue line AP=8, not just the segment AT≠8

    • @cyruschang1904
      @cyruschang1904 5 месяцев назад

      ​@@ericb5634 OK. That explains it. Thanks!

  • @unknownidentity2846
    @unknownidentity2846 5 месяцев назад +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    First of all we calculate the radius R of the circle:
    A = πR²
    49π = πR²
    49 = R²
    ⇒ R = 7
    Since OT is perpendicular to AB, we can conclude that T devides the chord AB into two parts with the same length. Therefore we obtain:
    AT = BT = AB/2 = (AP + BP)/2 = (8 + 5)/2 = 13/2
    Now let's add the points Q and R on the circle such that QR is the diameter where OT is located on. Then we can apply the intersecting chords theorem:
    QT*RT = AT*BT
    (OQ + OT)*(OR − OT) = AT²
    (R + OT)*(R − OT) = AT²
    R² − OT² = AT²
    OT² = R² − AT² = 7² − (13/2)² = 49 − 169/4 = (196 − 169)/4 = 27/4
    ⇒ OT = 3√3/2
    Now we are able to calculate the area of the green triangle:
    PT = AP − AT = 8 − 13/2 = 16/2 − 13/2 = 3/2
    A(OPT) = (1/2)*OT*PT = (1/2)*(3√3/2)*(3/2) = 9√3/8 ≈ 1.949
    Best regards from Germany

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @ColeMichael2027
    @ColeMichael2027 5 месяцев назад

    That was over complicated. Short leg is 1.5.
    Longer leg is the short leg of a right triangle with hypotenuse of 7 and long leg of 6.5.
    So that length is sqrt(27)/2.
    Area = bh/2= (3sqrt(3))/8

  • @JoskMclaren
    @JoskMclaren 4 месяца назад

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 5 месяцев назад +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) AB =13 lin un
    02) AP = 8 lin un
    03) BP = 5
    04) AT = BT = 13 / 2 lin un = 6,5 lin un
    05) TP = 6,5 - 5 = 1,5 lin un
    06) OA = 7 lin un
    07) OT^2 = OA^2 - AT^2
    08) OT^2 = 49 - 42,25
    09) OT^2 = 6,75
    10) OT = sqrt(6,75) lin un ; OT ~ 2,5981 lin un
    11) Green Triangle Area (GTA) = (OT * TP) / 2
    12) GTA = (sqrt(6,75) * 1,5) / 2
    13) GTA ~1,95 sq un
    Thus,
    OUR ANSWER : The Green Triangle Area is approx. equal to 1,95 Square Units.

    • @PreMath
      @PreMath  5 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @АнтонДорохов-е2п
    @АнтонДорохов-е2п 5 месяцев назад

    АО=7, АТ=8 это невозможно

  • @janolsen7915
    @janolsen7915 5 месяцев назад

    green area is more precise (9*sqrt3)/8 = 1,9486