Can you find area of the Green shaded region? | (Circle) |

Поделиться
HTML-код
  • Опубликовано: 27 дек 2024

Комментарии • 48

  • @KaushalKumaryadav956
    @KaushalKumaryadav956 5 месяцев назад +4

    first viewer first comment

    • @PreMath
      @PreMath  5 месяцев назад +1

      Excellent!
      Thanks ❤️

  • @sergioaiex3966
    @sergioaiex3966 5 месяцев назад +1

    Great explanation

  • @sagardeshpande2092
    @sagardeshpande2092 5 месяцев назад +1

    Superb

  • @BBMathTutorials
    @BBMathTutorials 5 месяцев назад +2

    🎉great video sir🙋🏻‍♂️thank you so much👍🏼

    • @PreMath
      @PreMath  5 месяцев назад

      You bet😀
      Glad to hear that!
      Thanks for the feedback ❤️

  • @jamestalbott4499
    @jamestalbott4499 5 месяцев назад +2

    Thank you!

    • @PreMath
      @PreMath  5 месяцев назад

      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @KipIngram
    @KipIngram 2 месяца назад

    Call the double-stroked length L. By the intersecting chords theorem we can immediately write
    L^2 = 2*(2*L+2)
    L^2 = 4*L + 4
    L^2 - 4*L - 4 = 0
    L = 2 + 2*sqrt(2), L = 2 - 2*sqrt(2)
    Looks from the problem like we need the larger one, so we will go with L = 2+2*sqrt(2). So the radius of the circle is R = 4+2*sqrt(2). Now for segment AO. The area of the sector AOB is (45/360)*pi*R^2, and the shaded area is that minus L^2/2. It comes out to 6.6537. Q.E.D.

  • @bakrantz
    @bakrantz 5 месяцев назад +1

    CO is a perpendicular bisector. So you can extend AC to a point AD and you intersecting chords to solve for the unknown lengths CO and AC. OC and AC can make an isosceles right triangle with angles 45-45-90. Calculate the sector area for 45 degrees and subtract the isosceles triangle area to get the green shaded area.

    • @PreMath
      @PreMath  5 месяцев назад +1

      Thanks for the feedback ❤️

    • @bakrantz
      @bakrantz 5 месяцев назад +1

      @@PreMath Even though I am well past my geometry years, I enjoy your math puzzles each morning. Thanks.

    • @PreMath
      @PreMath  5 месяцев назад +1

      @@bakrantz
      Thanks my dear friend. Stay blessed🙏

    • @quigonkenny
      @quigonkenny 5 месяцев назад +1

      Nice alternate method. 👍

    • @LucasBritoBJJ
      @LucasBritoBJJ 5 месяцев назад +1

      π(2√2+3)-(4√2+6)
      I extend to the right the AC line to a colinear and mirrored straight line to a point D through the circle
      And extended down the BO line to a colinear and mirrored r line, to a point E
      AC = CO
      CO = r - 2
      AC.CD = CE.BC
      (r-2)²=2(2r-2)
      r²-4r+4=4r-4
      r²-8r+8=0
      Completing squares, we have:
      r²-8r+16=8
      (r-4)²=8
      r-4=±√8
      r=±√8+4
      r=±2√2+4
      r′=2√2+4 (ok)
      r″=-2√2+4 (not ok, since it is smaller than 2, i think)
      Then, triangle ACO area is:
      (r-2)².½ = 4√2+6
      1/8 sector area is:
      (πr²)/8, then:
      [π(2√2+4)²]/8 = π(2√2+3)

  • @navodshehan1604
    @navodshehan1604 5 месяцев назад

    ❤️

  • @ChuzzleFriends
    @ChuzzleFriends 5 месяцев назад +1

    Let's start by labeling the radius of ⊙O as r.
    So, CO = BO - BC = r - 2.
    Since AC = CO, AC = r - 2.
    Draw radius AO. △ACO is an isosceles right triangle.
    r = (r - 2)√2
    r = r√2 - 2√2
    r - r√2 = -(2√2)
    r(1 - √2) = -(2√2)
    r = [-(2√2)]/(1 - √2)
    Rationalize the denominator by multiplying the fraction by (1 + √2)/(1 + √2).
    = [-(2√2) * (1 + √2)]/(1 - 2)
    = [-(2√2) - 4]/(-1)
    = 2√2 + 4
    Green Region Area = Sector AOB Area - △ACO Area
    Because △ACO is an isosceles right triangle, m∠AOB = 45°.
    A = πr² * (θ/360°)
    = π * (2√2 + 4)² * (45°/360°)
    = π * (8 + 16√2 + 16) * (1/8)
    = π * (24 + 16√2) * (1/8)
    = π(3 + 2√2)
    = 3π + (2π)√2
    AC = CO = r - 2 = (4 + 2√2) - 2 = 2 + 2√2.
    A = (bh)/2
    = 1/2 * (2 + 2√2) * (2 + 2√2)
    = 1/2 * (4 + 8√2 + 8)
    = 1/2 * (12 + 8√2)
    = 6 + 4√2
    Green Region Area = [3π + (2π)√2] - (6 + 4√2)
    = 3π - 6 + (2π - 4)√2
    So, the area of the green shaded region is π(3 + 2√2) - 6 - 4√2 square units, a. w. a. 3π - 6 + (2π - 4)√2 square units (exact), or about 6.65 square units (approximation).
    Spoiler (probably):
    Video rewrite of the answer: (3 + 2√2)(π - 2) square units

  • @nandisaand5287
    @nandisaand5287 5 месяцев назад +4

    I calculated
    r=a+2
    r=4+2•Sqrt(2)
    Area=r²((Pi-2)/8)
    =(Pi-2)/8•[4+2•Sqrt(2)]²
    =(Pi-2)/8•(24+16Sqrt(2))
    =(Pi-2)•(3+2Sqrt(2))

    • @PreMath
      @PreMath  5 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

    • @shalinisuryavanshi314
      @shalinisuryavanshi314 5 месяцев назад

      Hey I am confused with second step ????

    • @shalinisuryavanshi314
      @shalinisuryavanshi314 5 месяцев назад

      ..

    • @shalinisuryavanshi314
      @shalinisuryavanshi314 5 месяцев назад

      And how u made tha formula

    • @nandisaand5287
      @nandisaand5287 5 месяцев назад

      @@shalinisuryavanshi314
      Area="Pizza slice"-triangle
      Area=(45/360)•Pi•r²-1/2a²
      Where a=Sqrt(2)/2•r, as shown.
      Area=Pi/8r²-1/2(Sqrt(2)/2•r)²
      =Pi•r²/8-2•r²/8
      =r²((Pi-2)/8)

  • @cyruschang1904
    @cyruschang1904 4 месяца назад +1

    (r- 2)^2 + (r- 2)^2 = r^2
    r^2 - 8r + 8 = 0
    r = 4 + 2✓2 or 4 - 2✓2 (not possible)
    green area = (r^2)π/8 - [(r - 2)^2]/2 = π(4 + 2✓2)^2/8 - [(2 + 2✓2)^2]/2 = (3 + 2✓2)π - 6 - 4✓2 = (3 + 2✓2)(π - 2)

  • @giuseppemalaguti435
    @giuseppemalaguti435 5 месяцев назад +2

    AC=2(√2+1)..r=2(√2+2).. Agreen=Asett(45°)-AC^2/2=(π/8)r^2-2(3+2√2)=(π/8)4(6+4√2)-6-4√2=π(3+2√2)-2(3+2√2)=(π-2)(3+2√2)

    • @PreMath
      @PreMath  5 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @himo3485
    @himo3485 5 месяцев назад +2

    AC=CO=x x * x = 2 * (x + x + 2) x² = 4x + 4 x² - 4x - 4 = (x - 2)² - 8 = 0
    x - 2 = +-2√2 x > 0 , x = 2√2 + 2
    radius is 2√2 + 4
    Green area = (2√2 + 4)² * π * 45/360 - (2√2 + 2)² * 1/2
    = (24 + 16√2)π/8 - (12 + 8√2)/2 = (3 + 2√2) π - (6 + 4√2) = (3 + 2√2) π - 2(3 + 2√2) = (3 + 2√2)(π - 2)

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 5 месяцев назад +2

    S=(3+2√2)(π-2)=(√2+1)²(π-2)≈6,66

    • @PreMath
      @PreMath  5 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @corkjaguar
    @corkjaguar 4 месяца назад

    I wish more people thought like engineers......
    The ratio of the length BC to the radius is a constant (because AC=CO) AC represents a half of one side of the maximum square that will fit inside that circle. Had to do my own calculations to figure out the ratio, but we don't figure out π every time, could not for the life of me find the BC to radius ratio online, so simply applied random values (5) to lengths AC which equals CO, hence I know the length of two sides of right angle triangle so the radius is the square root of 50, so ratio is (6.8..... -5)/6.8..... =.2929...
    That's the ratio ( ✓50-5)/✓50
    So knowing the radius of the circle and the dimensions of the square with insultingly simple maths, the shaded area is 1/8 of (the area of the circle minus the area of the square).

  • @Birol731
    @Birol731 5 месяцев назад +3

    My way of solution ▶
    we can find the radius of the circle
    a) according to the Pythagorean theorem:
    (r-2)²+(r-2)²= r²
    r²-4r+4+r²-4r+4= r²
    r²-8r+8=0
    or: Intersecting chords theorem:
    (r-2)*(r-2)= 2*[(r-2)+r]
    (r-2)² = 2*(2r-2)
    r²-4r+4= 4r-4
    r²-8r+8=0
    both equations will give the radius of the circle, lets take one:
    r²-8r+8=0
    Δ= 64-4*1*8
    Δ= 32
    √Δ= 4√2
    r₁= (8-4√2)/2
    r₁= 4-2√2
    r₂= 4+√2
    if r = 4-2√2, then r-2 would be equal to 2-2√2 < 0, that's why
    r= 4+2√2
    Agreen= π*r²*(α/360°) - 1/2*(r-2)²
    r= 4+2√2
    α= 45°

    Agreen= π*(4+2√2)²*(45°/360°) - 1/2*(r-2)²
    = π*(4+2√2)²*(1/8) - 1/2*(r²-4r+4)
    = π*(16+16√2+8)*(1/8) - 1/2*[(4+2√2)²-4*(4+2√2) +4]
    = π*(24+16√2)*(1/8) - 1/2*[(16+16√2+8- 16 -8√2 +4]
    = π(3+2√2) - 1/2(8√2+12)
    = π(3+2√2) - 4√2-6
    = π(3+2√2) - 2(2√2+3)
    Agreen= (3+2√2)[π-2] square units

    • @PreMath
      @PreMath  5 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @prossvay8744
    @prossvay8744 5 месяцев назад +2

    Let R is Radius of circle
    AC=OC=a
    So R=a+2 ; a=R-2
    a^2=(R+a)(2)
    (R-2)^2=2(R+R-2)
    So R=4+2√2
    Connect O to A
    So right triangle isosrles AOC ∆
    So AOC=45°
    a=4+2√2-2=2+2√2
    Area of the sector =45/360(π)((4+2√2)^2=π(3+2√2)
    Area of right triangle=1/2(2+2√2)^2=6+4√2
    Green area=π(3+2√2)-(6+4√2)=6.65 square units.❤❤❤v

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @s.j.r7656
    @s.j.r7656 5 месяцев назад

    r²=2(r-2)²
    -> r=2√2+4 -> a=2√2+2 -> a=4.8
    -> θ=45°
    sector area =
    π/8(2√2+4)²=π(2√2+3)=5.8π
    triangle area = a.a/2 = 11.7
    green area = 5.8π-11.7 = 6.4u²

  • @gelbkehlchen
    @gelbkehlchen 3 месяца назад

    Solution:
    r = radius of the circle.
    Pythagoras for the isosceles, right triangle AOC: (r-2)²*2 = r² ⟹
    (r²-4r+4)*2 = r² ⟹
    2r²-8r+8 = r² |-r²
    r²-8r+8 = 0 |p-q-formula ⟹
    r1/2 = 4±√(16-8) = 4±√8 ⟹
    r1 = 4+√8 and r2 = 4-√8 < 2, but r must be larger than 2 ⟹ r1 = 4+√8 is correct.
    Angle BOA is 45° because of the isosceles, right triangle AOC and the section BOA is the 45°/360° = 1/8 part of the circle. ⟹
    Green area = π*(4+√8)²/8-area of the isosceles, right triangle AOC
    = π*(16+8*√8+8)/8-(4+√8-2)²/2 = π*(24+8*√8)/8-(2+√8)²/2
    = π*(3+√8)-(4+4*√8+8)/2 = π*(3+√8)-(6+2*√8) = π*(3+√8)-6-2*√8 ≈ 6,6537

  • @marcgriselhubert3915
    @marcgriselhubert3915 5 месяцев назад

    In triangle AOC: (R -2)^2 + (R -2)^2 = R^2, with R the radius of the circle. So R^2 -8.R + 8 = 0
    Deltaprime = 8, so R = 4 -2.sqrt(2) which is rejected as inferior to 2, or R = 4 + 2.sqrt(2) which is O.K.
    Then the area of triangle AOC is (1/2).(R -2)^2
    =(1/2).(4 + 8 +8.sqrt(2)) = 6 +4.sqrt(2)
    The area of sector AOB is Pi.(R^2).(45°/360°)
    = Pi.(16 + 8 +16.sqrt(2)).(1/8) = (3 +2.sqrt(2)).Pi
    Finally, the green area is: (3 +2.sqrt(2).Pi - (6 +4.sqrt(2)).
    That was easy.

    • @PreMath
      @PreMath  5 месяцев назад

      Thanks for the feedback ❤️

  • @quigonkenny
    @quigonkenny 5 месяцев назад

    Draw OA. As OA and OB are both radii of circle O, OA = OB = r. Let OC = CA = x, so as CB = 2, OB = r = x+2. So x = r-2.
    Triangle ∆OCA:
    OC² + CA² = OA²
    x² + x² = r² = 2x²
    r² = 2(r-2)² = 2r² - 8r + 8
    r² - 8r + 8 = 0
    r = (-(-8)±√(-8)²-4(1)(8))/2(1)
    r = 4 ± √(64-32)/2 = 4 ± 2√2
    r = 4 + 2√2 ---> r > 2
    x = r - 2 = (4+2√2) - 2 = 2 + 2√2
    As OC = CA, ∆OCA is an isosceles right triangle and ∠AOC = ∠CAO = (180°-90°)/2 = 45°. The green area is equal to the area of the sector covered by ∠AOC minus the area of the triangle ∆ OCA.
    Green area:
    Aɢ = (45°/360°)πr² - bh/2
    Aɢ = π(4+2√2)²/8 - (2+2√2)²/2
    Aɢ = (π/8)(16+16√2+8) - (4+8√2+8)/2
    Aɢ = (3+2√2)π - (6+4√2)
    Aɢ = (3+2√2)(π-2) ≈ 6.65 sq units

  • @unknownidentity2846
    @unknownidentity2846 5 месяцев назад +2

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    First of all we apply the Pythagorean theorem to the right triangle OAC. With R being the radius of the circle we obtain:
    OA² = OC² + AC² = 2*OC²
    R² = 2*(R − 2)²
    R² = 2*R² − 8*R + 8
    0 = R² − 8*R + 8
    R = 4 ± √(4² − 8) = 4 ± √(16 − 8) = 4 ± √8 = 4 ± 2√2
    Since R>2, the only useful solution is R=4+2√2. The triangle OAC is also an isosceles triangle. So we can conclude:
    ∠AOC = ∠OAC = (180° − ∠OCA)/2 = (180° − 90°)/2 = 90°/2 = 45°
    Now we are able to calculate the area of the green region:
    A(green)
    = A(circle sector OAB) − A(triangle OAC)
    = πR²*(∠AOC/360°) − (1/2)*OC*AC
    = πR²*(45°/360°) − (1/2)*(R − 2)*(R − 2)
    = πR²/8 − (1/2)*(R²/2)
    = πR²/8 − R²/4
    = (π/2 − 1)*R²/4
    = (π/2 − 1)*(4 + 2√2)²/4
    = (π/2 − 1)*(16 + 16√2 + 8)/4
    = (π/2 − 1)*(24 + 16√2)/4
    = (π/2 − 1)*(6 + 4√2)
    ≈ 6.654
    Best regards from Germany

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @wackojacko3962
    @wackojacko3962 5 месяцев назад +1

    Guess I'll have too bake an upside down cake today. 🙂

    • @PreMath
      @PreMath  5 месяцев назад +1

      Awesome😀
      Thanks for sharing ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 5 месяцев назад +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) OC = AC = X lin un
    02) OB = OA = R = (X + 2)
    03) X^2 + X^2 = R^2 ; 2X^2 = (X + 2)^2 ; 2X^2 = X^2 + 4X + 4 ; X^2 - 4X - 4 = 0
    04) Two Solutions : X = (2 - 2*sqrt(2)) or X = (2 + 2*sqrt(2)). Let's choose the Positive Solution X = (2 + 2*sqrt(2)) lin un ; X ~ 4,83 lin un.
    05) R = X + 2 ; R = (2 + 2*sqrt(2)) + 2 ; R ~ 6,83 lin un ; R^2 ~ 46,63
    06) Sector [OAB] Area ~ 18,32 sq un
    07) Triangle [AOC] Area ~ 11,66 sq un
    08) Green Area = 18,32 - 11,66 ; Green Area = 6,66
    Therefore,
    OUR BEST ANSWER (after correcting our mistakes inputing values in Wolfram Alpha) is :
    The Green Area is approx. equal to 6,66 Square Units.
    Best Regards from The Islamic Caliphate - Cordoba.

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @sergioaiex3966
    @sergioaiex3966 5 месяцев назад

    Solution:
    By Chords Theorem
    (r - 2) . (r - 2) = 2 . (2r - 2)
    r² - 4r + 4 = 4r - 4
    r² - 8r + 8 = 0
    r = 8 ± √32/2
    r = 8 ± 4√2/2
    r = 4 ± 2√2
    r = 4 + 2√2 Accepted
    r = 4 - 2√2 Rejected
    Green Area (GA) = Sector Area - Triangle Area ... ¹
    Sector Area = 45°/360° π (4 + 2√2)²
    Sector Area = ⅛ π (16 + 16√2 + 8)
    Sector Area = ⅛ π (24 + 16√2)
    Sector Area = π (3 + 2√2)
    a = r - 2 = 4 + 2√2 - 2
    a = 2 + 2√2
    Triangule Area = ½ a²
    Triangule Area = ½ (2 + 2√2)²
    Triangule Area = ½ (4 + 8√2 + 8)
    Triangule Area = ½ (12 + 8√2)
    Triangule Area = 6 + 4√2
    GA = π (3 + 2√2) - (6 + 4√2)
    GA = π (3 + 2√2) - 2 (3 + 2√2)
    GA = (π - 2) . (3 + 2√2) Square Units
    GA ~= 6,654 Square Units