Привет! Мы очень-очень старались, и надеемся, что этот ролик станет хорошим подарком к Новому году! Если для вас так и получилось, то лучший ответный подарок - лайк и добрый комментарий. Вновь поздравляю всех зрителей с наступающим Новым годом! Ура!
Есть ли то чего вы еще не знаете в математике или уже все изучили ? Или какой примерно процент из всей математики вами изучен исходя из существующих достижений на данный момент?
Считается, что последние математики-универсалы, которые были способны охватить на серьезном уровне все актуальные в свое время области - это Анри Пуанкаре и Давид Гильберт. За последние 100 лет развитие науки происходило молниеносными темпами. Так что уверенно заявляю: я знаю, что ничего не знаю. В процентах (а может, и в промилле) - 0,01-0,02% самый оптимистичный прогноз.
@@WildMathing тогда можно вопрос по другому: Какие направления в математике считаются самыми практичными (востребованными) и самыми фундаментальными (затрагивающие философские основы мироздания) Осмелюсь предположить что первое - теория чисел. А второе топология. Хотелось бы знать мнение учёного, профессионала.
Очень жаль, что в ролике рассказываются довольно тривиальные вещи, которые есть в той же википедии. Я ожидал услышать какое-то объяснение про физическую природу числа пи. Что оно неким образом отражает изотропность пространства, что за счет этого оно встречается в физике почти везде. К сожалению, ничего про это здесь не сказано.
Сидят Василий Иваныч и Петька у железнодорожных рельс. Петька, слушая как стучат колеса мимопроезжающих поездов, спрашивает у Василия Иваныча: - Василий Иваныч, я вот смотрю на рельсы, они вроде бы ровные, и колеса, вроде бы круглые, но почему они стучат? - Экий ты, Петька, несмышлённый! Ты помнишь формулу площади круга? - Вроде бы да, пи эр квадрат. - Так вот этим квадратом и стучат!
Ролик очень понравился. Я сам будучи студентом матфака с 1998 по 2003 годы увлекался расчетами числа пи. Я использовал 4арктан1/5-арктан1/239. До 1 млн цифр дошел и частоты считал. Опыты ставил. Как ролик посмотрел, аж на душе потеплело! Спасибо! Уважаю!
@Дарья Лисина, у меня точно так же он вызывает уважение, ибо, очевидно, что дело сделано не ради цифр, а чего-то вечного, идеального, возможно, сакрального.
Был у Алексея на лекции, получил его прелестную книжку про математику для гуманитариев. Могу сказать, что ролик получился превосходный! Очень понравилось. Спасибо вам огромное!)
Спасибо за такой позитивный ролик! Проф. Савватеев просто покорил искрометным юмором. Как писал Гоголь, прежде, давно, в лета моей юности, в лета невозвратно мелькнувшего моего детства, мне было весело -подъезжать- вычислять Пи в Экселе как отношение к диаметру окружности периметров вписанных и описанных многоугольников. При количестве углов N =104 857 600 разница в оценке Пи по вписанному и описанному многоугольнику оказалась меньше машинной точности и с этой же машинной точностью (естественно!) совпала с "точным" значением вычисленным как 4*arctg(1). В моем компе это 14 знаков после запятой. Пи = 3.14159265358979
когда они узнали о существовании Саватеева , была переписана вся научная теория алгебраического воссоздания вселенной и подчинения ее земным законам. На что Саватеев только горько усмехнулся, и пошел в гости к Либерману пить чай с пространственно временным тортиком.
Отличнейшее видео, совсем не ожидал увидеть Савватеева. Хотелось бы, чтобы гости такого уровня чаще появлялись в будущем. Надеялся увидеть формулу Чудновских и ее глубокий разбор, да и упоротых вариантов от Рамануджана не хватает. Кстати, интересным фактом является то, что у Эйлера в работах пи было как отношением длины как полной окружности к диаметру, так и ее половины и даже полной окружности к радиусу. Вообще, Эйлер использовал это обозначение, как общее для отношения длины любой дуги круга к его радиусу. Всех с наступающим!
Здравствуйте! Спасибо большое за Вашу деятельность! Даже не большое, а оргомнейшее! Видеоролики всегда на высочайшем уровне (особенно геометрические). Очень нравится Ваш подход к работе (если это можно так называть)). Ещё раз спасибо и удачи! З.Ы. На 13:18 полнейший разнос) xDDDDD
@@WildMathing хорошее сравнение с Москвой ведь по сути твой контент будет актуален вечно, точнее до тех пор пока существует человечество или любая другая разумная форма жизни у которой есть доступ к RUclips. И это не может не радовать.
При упоминании Лудльфа... напомнило из школы (я в 1975 10й класс закончил), - таблицы Брадиса (мы их ещё использовали в вычислениях!). Я, сидя на уроке, представлял, как эти десятки (сотни?) безвестных математиков-чернорабочих десятилетиями корпели над вычислением точных значений квадратных корней. Теперь эти таблицы не нужны, но кто скажет, что их труд был напрасным?!...
Ролик для таких туповатых как я выглядит примерно так: Всё понятно, довольно интересно, предвкушение чего-то простого и понятного, но вдруг начинается математика и подсчёты с формулами) Я не отрицаю свою глупость и тот факт что я недопонял видео, но ролик очень крутой и как минимум мне стало интересно выучить и понять происходящее в этом видосе. Люблю вас
И вот как тут смотреть лекции перед сессией,когда тут такие ролики на просторах гуляют...Очень люблю занимательную математику на вашем канале! Жду еще больше в новом году!!! :)
Впервые услышал Архимага Математики вне видосиков))) Прекрасно)))) А так спасибо за "пи"))) теперь я ещё больше узнал об этом числе))) P.S: я по жизни трансцендентный😂😂😂
Спасибо за подарок! Хочу поучаствовать. Неточность на 8:20. Во-первых, или +1/(3^21 * 21) или -1/(3^27 * 27), но не +1/(3^21 * 27). Во-вторых, 2^27 меньше, чем 3^21 (различие на два порядка). 4/(2^27 *27) = 1.1038/10^9, то есть девятый знак всё-таки слегка с натяжкой. В любом случае, стрелка с подписью "Меньше, чем 1/10^9" к слагаемому с тройкой совершенно мимо. В-третьих, ряд arctg(1/3) можно было остановить на 4/(3^19 * 19) = 1.8/10^10, а ряд arctg(1/2) на 4/(2^29 * 29) = 2.57/10^10.
Спасибо за комментарий! В чем-то соглашусь с вами, но(!) Во-первых, про опечатку уже все сказано в описании, ссылочка на верный кадр имеется. Мало того, есть записи Алексея Владимировича на доске, по которым ясно, что к чему. Во-вторых, Алексей излагал суть, ограничиваясь мысленными и очень быстрыми прикидками (1-2 секунды размышления), что очевидно, - послушайте внимательно момент 8:34, там обращение к вам лично. Если вы сами поняли достаточность 19-ой степени для тройки для поставленной цели, то странно видеть жалобы на 21-ую. В-третьих, ради интереса вычислил в мат.пакете, что написал Алексей на доске - получилось в точности 9 верных знаков после запятой числа π. Все-таки можно было остановить arctg(1/2) на 27-ой степени, а ваша 29-ая необязательна. Думаю, на этом вопрос можно закрыть. Притом ваш комментарий, естественно, является ценным дополнением. Так что еще раз спасибо за него!
@@maksym702 ну смотри, там альфа=arctg 1/2, подставляем в tg, tg( альфа)= tg(arctg 1/2)= 1/2, и так остальные значения. У меня единственный вопрос, как Эйлер нашел значения альфа и бета.
Вопрос связанный чтобы понять это число не циферками, а некой сущностью, которая бы помогла мыслить более абстрактно, мысленно, вырисовывая в голове эти цифры виде процесса. К примеру в 4 измерении: от t=0 …. до t=100500. помогите понять вот что. Видел в формуле Хокинга по излучению черной дыры число такое: 8 умноженное на Пи. Это как? 8 в данном случае это диаметр? Мне не кажется что так. А может быть если 2Пи это один круг. 4 Пи это два круга. 6Пи это три круга. А 8Пи это четыре круга? Может ли это обозначать что в формуле Хокинга по излучению черной дыры, это может обозначать что 8Пи значится что за четыре оборота черной дыры относительно себя? Спасибо!
12:20 пи на поверхности сферы вообще круто) при движении на любых скоростях тоже можно сделать формулу))) только вот нужна ли она? пи=2 для любой сферы если это экватор) это логично)))) так как длину можно повернуть на 90 градусов и получить тот же самый ответ) что тоже логично!)))) а это две точки на сфере) а значит можно иметь любой вращятельный элемент) например как спин.
@@WildMathing, подскажите, пожалуйста, в каком видео говорилось про к-мерный оркестр? А вот это старое видео с Савватеевым очень понравилось, подписался)
8:20 кстати, + этой формулы в том, что 3^n можно вычислить с помощью предыдущих степеней 3: 3^n=2*(3^0+...+3^(n-1))+1 Это можно легко доказать по мат.индукции
Ооооочень круто, спасибо А как вам идея сделать ролик про теорему Люка и некоторые ее следствия? Это одна из моих любимых теорем, так как она совсем нетривиальным образом связывает биномиальные коэффициенты, простые числа и запись чисел в различных системах счисления
О, Савватеев! Он же у нас в школе проводил лекцию, не ожидал увидеть ещё раз знакомое лицо! (Хотя, в последнее время вообще этому не удивляюсь, мир тесен так сказать)
Привет из Киева, спасибо большое за этот ролик, давно ждал, что будет что-то подобное))) Будет весело, если Вы ещё Трушина к себе позовёте))) С Новым годом !!
@@WildMathing спасибо, тоже надеюсь)) продолжайте в том же духе, смотреть Вас - одно удовольствие)) (Кстати, очень заходят вставки в видео на украинском языке, это реально смешно и прикольно)
На 10:00 удивил термин "метрика Минковского". В русской вики так называется семейство метрик Lp. В англоязычной вики такую метрику называют taxicab т.к. Это соответвует расстоянию межлу двумя точками если ездить решётке улиц Нью-Йорка. Видимо в русской (советской) школе высшей математики есть свои особые термины. А вообще у меня случилось дежа вю. Я видел это в PBS Infinite Series. 😉
Попробуем обойтись без Пи. Берем лист железа толщиной например 1 мм. Из листа вырезаем точный квадрат, со сторонами = 1 м. Итого площадь нашего квадрата = 1 м2. Взвешиваем квадрат, пусть вес будет равен 10 кг. Далее вырезаем из квадрата круг, весом 5 кг. Вот и всё - мы абсолютно точно знаем, что площадь этого круга, равна абсолютно точному числу 0,5 м2. Безо всякой бесконечности чисел после запятой. Получается интересная картина - теперь, чтобы наоборот найти из площади круга 0,5 м2 число Пи, мы будем вынуждены "подгонять" длину радиуса со многими знаками после запятой. А если просто измерить радиус, тогда число Пи в том значении каким мы его знаем, не получится. Вот такая загогулина. Кстати. Круг можно не вырезать. Достаточно иметь точно взвешенный квадрат в виде основы, точки отсчета. Круг можно вырезать из другого куска, главное чтобы толщина металла соответствовала шаблону. Кстати 2. С помощью этого метода можно узнать без применения числа ПИ, абсолютно точную площадь не только круга, а любой фигуры самой сложной формы. Кстати 3. С помощью этого метода можно узнать без применения числа ПИ, абсолютно точную площадь не только круга, а любой фигуры самой сложной формы и любого размера. Хоть метр, хоть 1 000 000 км. Без разницы.
Лучше использовать формулу Бэйли-Боруэйна-Плаффа (ББП-формула, Формула ББП, BBP-формула) для вычисления n-го знака числа пи в шестнадцатеричной системе счисления. Формула позволяет найти любую цифру числа пи без необходимости вычисления предыдущих.
пи здесь довольно интересно показано), не знал что его выражали в древности обычными дробями, спасибо. но вот проблему сферы так и не понял - мы же всё равно берём разрез и длину дуги именно на плоскости, как и радиус действительно проводим из центра. Ну т.е. делать иначе является логичкой ошибкой, которая существует лишь в случае если мы действительно ошибочно полагаем сферу плоскостью. пс тут возник новый вопрос... если вселенная бесконечна, то её кривизну крайне сложно определить тогда (у космос просто было на эту тему) - ведь она для нас будет стремится к 0 , а значит и число пи невозможно истинно определить никакими спосабами))
Добрый день, как то поспорили с коллегами на работе, что 380 вольт это есть произведение 220 вольт на корень из пи. Коллеги утверждают, что надо умножать на корень из трех. (127в.Х корень из пи=220в.) Пожалуйста, рассудите нас.
слушайте, так вопросик, ) Савватеев, тут вскользь упомянул про двумерных существ на поверхности шара, которые не правильно меряют Пи, у вас же было видео где вы показывали как потенциальный челик из 4х мерного мира может вырваться из рамок окружности/сферы, вот я подумал, может мы тоже не правильно считаем Пи, коль есть большие размерности пространства и надо оттуда мерять эти растояния ?) (извините)
Вообще математические константы крутые штуки.Сам люблю на питоне писать проги на их аппроксимацию, а зайдешь так на википедию, там куча представлений и через ряды и через интегралы, аж голову сносит.
Привет! Мы очень-очень старались, и надеемся, что этот ролик станет хорошим подарком к Новому году! Если для вас так и получилось, то лучший ответный подарок - лайк и добрый комментарий. Вновь поздравляю всех зрителей с наступающим Новым годом! Ура!
Есть ли то чего вы еще не знаете в математике или уже все изучили ? Или какой примерно процент из всей математики вами изучен исходя из существующих достижений на данный момент?
Считается, что последние математики-универсалы, которые были способны охватить на серьезном уровне все актуальные в свое время области - это Анри Пуанкаре и Давид Гильберт. За последние 100 лет развитие науки происходило молниеносными темпами. Так что уверенно заявляю: я знаю, что ничего не знаю. В процентах (а может, и в промилле) - 0,01-0,02% самый оптимистичный прогноз.
@@WildMathing тогда можно вопрос по другому: Какие направления в математике считаются самыми практичными (востребованными) и самыми фундаментальными (затрагивающие философские основы мироздания)
Осмелюсь предположить что первое - теория чисел. А второе топология. Хотелось бы знать мнение учёного, профессионала.
За кадром у саватеева не ты?
Очень жаль, что в ролике рассказываются довольно тривиальные вещи, которые есть в той же википедии. Я ожидал услышать какое-то объяснение про физическую природу числа пи. Что оно неким образом отражает изотропность пространства, что за счет этого оно встречается в физике почти везде. К сожалению, ничего про это здесь не сказано.
Теперь мы знаем, что Савватеев знает один большой секрет:
он знает, как выглядит автор канала WildMathing.
Ученики Wild'a тоже знают, как он выглядит :)
@@miko_yumi и как?
@Avel не молодой)
@@miko_yumi я ученик Wild-а. Он в прошлом году показывал лицо? реально?
@@alex-web7553 сейчас нет??
Сидят Василий Иваныч и Петька у железнодорожных рельс. Петька, слушая как стучат колеса мимопроезжающих поездов, спрашивает у Василия Иваныча:
- Василий Иваныч, я вот смотрю на рельсы, они вроде бы ровные, и колеса, вроде бы круглые, но почему они стучат?
- Экий ты, Петька, несмышлённый! Ты помнишь формулу площади круга?
- Вроде бы да, пи эр квадрат.
- Так вот этим квадратом и стучат!
хороший прекол
Так колёса не плоский круг, они как сплющенный цилиндр
Супер
Ролик очень понравился. Я сам будучи студентом матфака с 1998 по 2003 годы увлекался расчетами числа пи. Я использовал 4арктан1/5-арктан1/239. До 1 млн цифр дошел и частоты считал. Опыты ставил. Как ролик посмотрел, аж на душе потеплело! Спасибо! Уважаю!
На чем делали расчёты?
Топ 10 аниме-кроссоверов
Надеюсь, этот ролик на первом месте!
Как никак π - самое кавайное, что есть в математике!
А как же число е?(
Вычислять число е гораздо приятнее даже будет!
Wild Mathing oh, sin(pi)
@@dreamwolfnektovich1944 а где можно посмотреть его?
@@ПодготовкакЕГЭ-х1ш, если вдруг речь о моем ролике, то мельком затрагивали тему здесь: ruclips.net/video/HgCck7QNbcs/видео.html
В следующем видео ждём доказательство одной из задач тысячелетия
Придётся звать Г. пирельмана
Всех задач за 5 минут
Я сам всё решу 😤
Не позорьтесь перед гостем, попробуйте сами, а уж затем смотрите разбор
- Сынок, что ты смотришь?
- Уроки черной магии, мам!
Ахахахах
Очень классно,спасибо за труд!(Лудольф ван Цейлен вообще дикий парень,полжизни эти многоугольники считал)))
Спасибо и вам, что смотрите!
@Дарья Лисина, у меня точно так же он вызывает уважение, ибо, очевидно, что дело сделано не ради цифр, а чего-то вечного, идеального, возможно, сакрального.
@@WildMathing трансцендентного же!
@@ИнакЧерновцев, в общем говоря, да - профессор познавал трансцендентное во всех смыслах!
... круто, завораживающе, потрясно, я из всего сказанного понял только "Линдеманн" 👻
Напутствие от Савватеева.Ролик под Новый Год.А вы умеете удивлять.Спасибо за ссылки и за ролик.С Новым вас годом!100000 не за горами
Все для вас!
Спасибо!
@@WildMathing фантастика!
@@WildMathing фантастика!
Ошеломлён! Сильно хотел выпить. Послушал. Расхотел. Работает безотказно. Списал весь карандаш. Ищу многочлен!
Просто невероятный канал! Спасибо огромное за твой труд, это реально круто)
Спасибо за добрые слова!
Был у Алексея на лекции, получил его прелестную книжку про математику для гуманитариев. Могу сказать, что ролик получился превосходный! Очень понравилось. Спасибо вам огромное!)
Вам спасибо!
Сколько времени и сил. Спасибо !!!
Спасибо, что оценили!
Судя по комментариям, старания были не напрасны!
Спасибо за такой позитивный ролик! Проф. Савватеев просто покорил искрометным юмором. Как писал Гоголь, прежде, давно, в лета моей юности, в лета невозвратно мелькнувшего моего детства, мне было весело -подъезжать- вычислять Пи в Экселе как отношение к диаметру окружности периметров вписанных и описанных многоугольников. При количестве углов N =104 857 600 разница в оценке Пи по вписанному и описанному многоугольнику оказалась меньше машинной точности и с этой же машинной точностью (естественно!) совпала с "точным" значением вычисленным как 4*arctg(1). В моем компе это 14 знаков после запятой. Пи = 3.14159265358979
Захватывающе!
Блин какая подача !!!!!!!!!!!!!! Низкий поклон вам за труд !!!!!!!!
Большое спасибо, что посмотрели и оценили!
западные математики сделали часовое видео про 24 способа интегрирования косинуса, но одно присутствие Савватеева просто уделывает их всех 👍
Ссылку в студию xD
@@LevkoTokarev flammable maths канал
@@LevkoTokarev ruclips.net/video/gO8AwBmQK5Q/видео.html
25-й -кадр- способ, пригласить Савватана
когда они узнали о существовании Саватеева , была переписана вся научная теория алгебраического воссоздания вселенной и подчинения ее земным законам. На что Саватеев только горько усмехнулся, и пошел в гости к Либерману пить чай с пространственно временным тортиком.
Лайк за отсылку к солисту Rammstein - Тиллю Линдеманну
Тиль, сам отсылка к тому математику, неуч
Feat которого заслуживал 2018
Отличнейшее видео, совсем не ожидал увидеть Савватеева. Хотелось бы, чтобы гости такого уровня чаще появлялись в будущем.
Надеялся увидеть формулу Чудновских и ее глубокий разбор, да и упоротых вариантов от Рамануджана не хватает. Кстати, интересным фактом является то, что у Эйлера в работах пи было как отношением длины как полной окружности к диаметру, так и ее половины и даже полной окружности к радиусу. Вообще, Эйлер использовал это обозначение, как общее для отношения длины любой дуги круга к его радиусу.
Всех с наступающим!
о, последнее это тау!
Здравствуйте! Спасибо большое за Вашу деятельность! Даже не большое, а оргомнейшее! Видеоролики всегда на высочайшем уровне (особенно геометрические). Очень нравится Ваш подход к работе (если это можно так называть)). Ещё раз спасибо и удачи!
З.Ы. На 13:18 полнейший разнос) xDDDDD
Добрый день!
Большое спасибо за добрые слова!
Коллаб года, обожаю дикого и обожаю савватеева
Где-то в 2030:
Мать-тиктокер: опять эти Савватеевы, лучше бы Влада а4 посмотрел
Какой качественный ролик, жаль что так мало просмотров(
Москва не сразу строилась!
Не все интересуются математикой.
@@WildMathing хорошее сравнение с Москвой ведь по сути твой контент будет актуален вечно, точнее до тех пор пока существует человечество или любая другая разумная форма жизни у которой есть доступ к RUclips. И это не может не радовать.
Как же хорошо посмотреть на просто интересный контент, без срачей/диссов итд. Спасибо, что вы есть :)
При упоминании Лудльфа... напомнило из школы (я в 1975 10й класс закончил), - таблицы Брадиса (мы их ещё использовали в вычислениях!). Я, сидя на уроке, представлял, как эти десятки (сотни?) безвестных математиков-чернорабочих десятилетиями корпели над вычислением точных значений квадратных корней. Теперь эти таблицы не нужны, но кто скажет, что их труд был напрасным?!...
Однозначно лучшее, что случалось в жизни Ютуба и одно из самых лучших кроссоверов в математике!
Очень рад, что вы наконец встретились )
В свою очередь рад, что зрителям такая встреча пришлась по душе!
Ролик для таких туповатых как я выглядит примерно так:
Всё понятно, довольно интересно, предвкушение чего-то простого и понятного, но вдруг начинается математика и подсчёты с формулами)
Я не отрицаю свою глупость и тот факт что я недопонял видео, но ролик очень крутой и как минимум мне стало интересно выучить и понять происходящее в этом видосе. Люблю вас
Я ждал этого коллаба~!!!
Прозорливый ты, Николай: даже для меня он оказался несколько неожиданным!
Тилль Линдеманн как же я проорал...
И вот как тут смотреть лекции перед сессией,когда тут такие ролики на просторах гуляют...Очень люблю занимательную математику на вашем канале! Жду еще больше в новом году!!! :)
Спасибо, Аня!
Успехов на экзаменах!
Спасибо за интересное видео о числе Пи.
Информативность поражает. Круто!
Впервые услышал Архимага Математики вне видосиков))) Прекрасно))))
А так спасибо за "пи"))) теперь я ещё больше узнал об этом числе)))
P.S: я по жизни трансцендентный😂😂😂
То есть по жизни всем всё усложняете? Не стоит так самокритично, вы экспоненциально себя принижаете
Обработка божественная, смотреть - одно удовольствие
Рад, что понравилось!
Здорово, ребят! Очень крутой ролик. Делайте почаще такие кросоверы. Большое спасибо за ваш труд!
Все для вас!
Поздравим с Днем Рождения Алексея Владимировича, вы легендарный человек. Здоровья детям и долгих лет жизни, спасибо за то что вы делаете!!!!!
Спасибо за подарок!
Хочу поучаствовать. Неточность на 8:20.
Во-первых, или +1/(3^21 * 21) или -1/(3^27 * 27), но не +1/(3^21 * 27).
Во-вторых, 2^27 меньше, чем 3^21 (различие на два порядка). 4/(2^27 *27) = 1.1038/10^9, то есть девятый знак всё-таки слегка с натяжкой. В любом случае, стрелка с подписью "Меньше, чем 1/10^9" к слагаемому с тройкой совершенно мимо.
В-третьих, ряд arctg(1/3) можно было остановить на 4/(3^19 * 19) = 1.8/10^10, а ряд arctg(1/2) на 4/(2^29 * 29) = 2.57/10^10.
Спасибо за комментарий! В чем-то соглашусь с вами, но(!)
Во-первых, про опечатку уже все сказано в описании, ссылочка на верный кадр имеется. Мало того, есть записи Алексея Владимировича на доске, по которым ясно, что к чему.
Во-вторых, Алексей излагал суть, ограничиваясь мысленными и очень быстрыми прикидками (1-2 секунды размышления), что очевидно, - послушайте внимательно момент 8:34, там обращение к вам лично. Если вы сами поняли достаточность 19-ой степени для тройки для поставленной цели, то странно видеть жалобы на 21-ую.
В-третьих, ради интереса вычислил в мат.пакете, что написал Алексей на доске - получилось в точности 9 верных знаков после запятой числа π. Все-таки можно было остановить arctg(1/2) на 27-ой степени, а ваша 29-ая необязательна. Думаю, на этом вопрос можно закрыть. Притом ваш комментарий, естественно, является ценным дополнением. Так что еще раз спасибо за него!
Отлично сделанный ролик, спасибо!
Все для вас!
Какой же божественный у тебя голос! Настолько он подходит для объяснения матана! Я прекланяюсь пред твоим талантом!
Голос у меня, конечно, обычный, да и талант - скорее просто старание, но я очень и очень признателен за добрые слова!
@@WildMathing как из
tg(arctg 1/2 + arctg 1/3) = tg (arctg 1) получается
arctg 1/2 + arctg 1/3 = arctg 1
@@maksym702 обрати внимание на формулы 7:58
@@oneivanone часа 2 туда смотрел....(
@@maksym702 ну смотри, там альфа=arctg 1/2, подставляем в tg, tg( альфа)= tg(arctg 1/2)= 1/2, и так остальные значения. У меня единственный вопрос, как Эйлер нашел значения альфа и бета.
Блин, смотря сейчас день рождения было позавчера.
Большое спасибо за контент.
Лучшая совместка и лучший видос в уходящем 1^4+2^4+3^4+5^4+6^4
Очень приятно, что это взаимодействие было одобрено единогласно!
Классная коллаборация ! Лайкос, красавва !
Ваааау! Не ожидал увидеть Саватеева, с ним ролик смотрится еще более увлекательно)
Канун Нового года - самое время для приятных сюрпризов!
"Розги, розги" ) Так мой преподавать по выш.мату грозил некоторым студентам:) Видимо на мехмате эта угроза из поколения в поколение передаётся))
Ах да самое смешное, преподаватель при упоминании "Розги, розги" показывал пальцем все время на одно и тоже место на стене в аудитории
Хе-хе, да, Андрей, есть такое дело!
Спасибо, что заглянул!
@@WildMathing ;) Канал ещё лучше стал, очень рад за тебя и нынешних ребят
«Ты нормальный вообще?»
«Ну, Земле я вроде как перпендикулярен»
Этот ролик-классный подарок на новый год!
Очень увлекательно и познавательно!
Нравится ежегодно пересматривать
Вопрос связанный чтобы понять это число не циферками, а некой сущностью, которая бы помогла мыслить более абстрактно, мысленно, вырисовывая в голове эти цифры виде процесса. К примеру в 4 измерении: от t=0 …. до t=100500. помогите понять вот что. Видел в формуле Хокинга по излучению черной дыры число такое: 8 умноженное на Пи. Это как? 8 в данном случае это диаметр? Мне не кажется что так. А может быть если 2Пи это один круг. 4 Пи это два круга. 6Пи это три круга. А 8Пи это четыре круга? Может ли это обозначать что в формуле Хокинга по излучению черной дыры, это может обозначать что 8Пи значится что за четыре оборота черной дыры относительно себя? Спасибо!
Какой же кайф от ваших видео🤤
12:20 пи на поверхности сферы вообще круто) при движении на любых скоростях тоже можно сделать формулу))) только вот нужна ли она? пи=2 для любой сферы если это экватор) это логично))))
так как длину можно повернуть на 90 градусов и получить тот же самый ответ) что тоже логично!)))) а это две точки на сфере) а значит можно иметь любой вращятельный элемент) например как спин.
Я и не сразу заметил, но MathBook это забавно)
Спасибо всем, кто подмечает эти мелочи: в них душа видео!
Юмор математиков мне никогда не понять
Ну, он специфический, да!
Вспомнил про к-мерный оркестр)))
@@WildMathing, подскажите, пожалуйста, в каком видео говорилось про к-мерный оркестр? А вот это старое видео с Савватеевым очень понравилось, подписался)
@@АндрейОськин-ю4о, этот анекдот был вот здесь ruclips.net/video/ZwSSv3BcVy4/видео.html
@@WildMathing Спасибо) Прислал донат!
8:20 кстати, + этой формулы в том, что 3^n можно вычислить с помощью предыдущих степеней 3:
3^n=2*(3^0+...+3^(n-1))+1
Это можно легко доказать по мат.индукции
Much obliged! It's very fascinating video! I enjoyed watching this!
Спасибо за интересное видео :D с Наступающим!
С праздником всех-всех!
Ооооочень круто, спасибо
А как вам идея сделать ролик про теорему Люка и некоторые ее следствия? Это одна из моих любимых теорем, так как она совсем нетривиальным образом связывает биномиальные коэффициенты, простые числа и запись чисел в различных системах счисления
О, Савватеев! Он же у нас в школе проводил лекцию, не ожидал увидеть ещё раз знакомое лицо! (Хотя, в последнее время вообще этому не удивляюсь, мир тесен так сказать)
Привет из Киева, спасибо большое за этот ролик, давно ждал, что будет что-то подобное)))
Будет весело, если Вы ещё Трушина к себе позовёте)))
С Новым годом !!
Киевлянам привет! Очень рад, что ожидания оправдались!
Надеюсь, приятные сюрпризы будут и в 2019 году!
@@WildMathing спасибо, тоже надеюсь)) продолжайте в том же духе, смотреть Вас - одно удовольствие))
(Кстати, очень заходят вставки в видео на украинском языке, это реально смешно и прикольно)
Давно так не смеялась ;) здорово !
выпускаешь видео как раз по теме матанализа 1-го курса моего вуза) помогаешь к сессии готовиться, так сказать
Ну, тут много универсального материала!
В любом случае рад, коли видео актуально!
На 10:00 удивил термин "метрика Минковского". В русской вики так называется семейство метрик Lp. В англоязычной вики такую метрику называют taxicab т.к. Это соответвует расстоянию межлу двумя точками если ездить решётке улиц Нью-Йорка. Видимо в русской (советской) школе высшей математики есть свои особые термины.
А вообще у меня случилось дежа вю. Я видел это в PBS Infinite Series. 😉
Попробуем обойтись без Пи.
Берем лист железа толщиной например 1 мм. Из листа вырезаем точный квадрат, со сторонами = 1 м. Итого площадь нашего квадрата = 1 м2. Взвешиваем квадрат, пусть вес будет равен 10 кг. Далее вырезаем из квадрата круг, весом 5 кг. Вот и всё - мы абсолютно точно знаем, что площадь этого круга, равна абсолютно точному числу 0,5 м2. Безо всякой бесконечности чисел после запятой.
Получается интересная картина - теперь, чтобы наоборот найти из площади круга 0,5 м2 число Пи, мы будем вынуждены "подгонять" длину радиуса со многими знаками после запятой. А если просто измерить радиус, тогда число Пи в том значении каким мы его знаем, не получится. Вот такая загогулина.
Кстати. Круг можно не вырезать. Достаточно иметь точно взвешенный квадрат в виде основы, точки отсчета. Круг можно вырезать из другого куска, главное чтобы толщина металла соответствовала шаблону.
Кстати 2. С помощью этого метода можно узнать без применения числа ПИ, абсолютно точную площадь не только круга, а любой фигуры самой сложной формы.
Кстати 3. С помощью этого метода можно узнать без применения числа ПИ, абсолютно точную площадь не только круга, а любой фигуры самой сложной формы и любого размера. Хоть метр, хоть 1 000 000 км. Без разницы.
Великолепная синергия!!! Ютуб ещё жив, дорогие друзья)
это реально нереальный коллаб
Рад, что понравилось!
Вы - молодцы, мой ребёнок уже достаточно подрос, чтобы начинать его учить математике =)
Спасибо! И вам, и ребенку - успехов!
КАК ДАВНО Я ЖДАЛ ЭТУ КОЛЛАБОРАЦИЮ!
Одна голова хорошо, а две - лучше!
Не одно и тоже отношение. У кого точность выше , у того и отношение лучше.
Меня одну нервирует клацанье Алексея колпачком маркера)🤗🤗🤗
Линдеманн на 2:37 повеселил))
Годнота приехала
Спасибо за прекрасное видео! Подскажите пожалуйста какой программой вы пользуетесь для создания анимации решения уравнений
?
Спасибо, что посмотрели! Для такой анимации подойдет любой видеоредактор. Удобнее всего Adobe After Effects
какой же он довольный )))
Мне очень нравятся лекции Савватеева .Первая дата на последовательности ПИ - это 23.07.81 (63 позиция) Мой Д.Р. на 5583 позиции.
Лучшее видео 2018 года!
с 10:50 отличный подход, чтобы доказать плоскоземельщикам их ошибочность представления устройства мира
Контент, который мы заслуживаем
Это правда!
Согласен, поэтому у нас всё так плохо с математикой в стране что такие вот клоуны её преподают!
Кто и шутя и скоро пожелаетъ
Пи узнать, число ужъ знаетъ
и вас с наступающим!
Лучше использовать формулу Бэйли-Боруэйна-Плаффа (ББП-формула, Формула ББП, BBP-формула) для вычисления n-го знака числа пи в шестнадцатеричной системе счисления. Формула позволяет найти любую цифру числа пи без необходимости вычисления предыдущих.
Все зависит от целей! 14:54
Ух ты...
Мое коммунистическое уважение!
Наше капиталистическое спасибо
Вновь спасибо, Иосиф Виссарионович!
Лучший подарок на новый год)
Зажигательно!
пи здесь довольно интересно показано), не знал что его выражали в древности обычными дробями, спасибо.
но вот проблему сферы так и не понял - мы же всё равно берём разрез и длину дуги именно на плоскости, как и радиус действительно проводим из центра. Ну т.е. делать иначе является логичкой ошибкой, которая существует лишь в случае если мы действительно ошибочно полагаем сферу плоскостью.
пс
тут возник новый вопрос... если вселенная бесконечна, то её кривизну крайне сложно определить тогда (у космос просто было на эту тему) - ведь она для нас будет стремится к 0 , а значит и число пи невозможно истинно определить никакими спосабами))
Почаще б видеть таких гостей ;) очень интересно, лайк однозначно)
Приятно видеть такой фидбек!
Очень классная подача материала для не математиков, спасибо!
Всегда пожалуйста!
Мощно! Вообще как можно миллиард угольник посчитать вручную, а Гаусс циркулем и линейкой построил это просто не постижимо!
А можно увидеть автора канала? Уж больно красиво разговаривает он!!!
Теперь ждём видео про постоянную Эйлера - Маклорена
Я восторге 🙌👏👏👏
вижу Савватеева, ставлю лайк
Не буду скрывать: рассчитывал на это!
Добрый день, как то поспорили с коллегами на работе, что 380 вольт это есть произведение 220 вольт на корень из пи. Коллеги утверждают, что надо умножать на корень из трех. (127в.Х корень из пи=220в.) Пожалуйста, рассудите нас.
Ваши коллеги правы.
просто обожаю математиков это просто восхитительно
Спасибо за добрые слова!
спасибо за просвещение!
3 года как уже успешно сдала ЕГЭ, но все равно смотрю ваши видео, интересно)
Приятно это слышать!
Спасибо! И всё!
слушайте, так вопросик, ) Савватеев, тут вскользь упомянул про двумерных существ на поверхности шара, которые не правильно меряют Пи, у вас же было видео где вы показывали как потенциальный челик из 4х мерного мира может вырваться из рамок окружности/сферы, вот я подумал, может мы тоже не правильно считаем Пи, коль есть большие размерности пространства и надо оттуда мерять эти растояния ?) (извините)
Ну це уже релятивистская механика.
Вообще математические константы крутые штуки.Сам люблю на питоне писать проги на их аппроксимацию, а зайдешь так на википедию, там куча представлений и через ряды и через интегралы, аж голову сносит.
Класс!