Spain l can you solve this?? l Nice Olympiad Math Equation l m=?.

Поделиться
HTML-код
  • Опубликовано: 23 дек 2024

Комментарии • 42

  • @andresrebolledobanquet1924
    @andresrebolledobanquet1924 2 месяца назад +4

    - m^3 + m^2 = 3/64
    Utilicemos el método de derivadas Parciales.
    F(x)-m^3 = - 3m^2
    - 3m^2 + m^2 = - m^2
    -m^2 = 3/64
    F'(x)- m^2 = - 2m
    - 2m = 3/64
    m =3/64 / - 2
    m = - 0.02343

  • @ganeshdas3174
    @ganeshdas3174 2 месяца назад +3

    One value is m =1/4, two more can be found by solving rest of the quadratic equation.

  • @pistachosencastellan
    @pistachosencastellan 3 месяца назад +8

    There is a more simple way to solve that...
    Since m2-m3 is bigger thant 0, m should be smaller than one and positive, there fore, you can rewrite the m as a/b.
    Then, (a/b)^2-(a/b)^3=3/64;
    a^2/b^2-a^3/b^3=3/64;
    (b*a^2-a^3)/b^3=3/64.
    Here you can igualate numerator to numerator, denominator to denominator, and then you obtain b*a^2-a^3=3 and b^3=64. Here you can obtain b=4; The numerator equation is 4a^2-a^3=3; which can be resolved using Ruffini

  • @CAT-ly5vu
    @CAT-ly5vu 2 месяца назад +3

    Life is simple, math is not... It can take me months if hard studying to understand but even if I can't get there, I'm willing to spend time just to keep listening to the music... So spanish.
    Regards from TIJUANA, Baja California, México. ❤

  • @Utesfan100
    @Utesfan100 3 месяца назад +5

    Multiply both sides by 64, let u=4m.
    u^3-4u+3=0 has a clear solution of 1, or m=1/4. This leaves u^2-3u-3=0.
    Then u=(3+/-sqrt(21))/2, for m=(3+/-sqrt(21))/8.

  • @salvadorpalacios8490
    @salvadorpalacios8490 Месяц назад +1

    Excellent!!!! Cubic ecuation = 3 answers.

  • @PYTHAGORAS101
    @PYTHAGORAS101 3 месяца назад +2

    Imo a fraction is an uncalculated division, so I would write the result as .25
    To me it seems like having an equation (division/fraction) as a result is not finalizing the problem.
    Resolving the fraction into its decimal representation is the ultimate final answer.
    I wonder if others feel this way.
    Thumbs up if you are in agreement with me folks and down if you don't.

  • @michaeledwards2251
    @michaeledwards2251 2 месяца назад +1

    I prefer solving quadratic to cubic equations.
    A value of 3/64 on the RHS. The presence of a cubic on the LHS led me to investigate the cube root of 64, 4. Investigating 1/4 gives 3/64 from (1/4)^2 - (1/4)^2 on the LHS. Sufficient to reduce the problem to a quadratic.
    My background involved a great deal of back fitting equations to material properties and using other people's backfits. Throughout judgement of any results, and backfit methodology was essential : recognizing the dominant source/sources of error drove the methodology.

  • @icebear771
    @icebear771 3 месяца назад +3

    64m²-64m³=3 ou encore
    4(4m)²-(4m)³=3.
    On pose M=4m alors 4M²-M³=3.
    M³-4M²+3=0.
    1 est une solution évidente.
    La division par M-1 est plus simple.

  • @davidbrisbane7206
    @davidbrisbane7206 3 месяца назад +2

    m² - m³ = m²(1 - m) = 3/64.
    My first guess is that m is of the form 1/2ⁿ.
    More specifically, if 1 - m = 3/4 , then m would be 1/4 and this works!
    m = 1/4 is a solution, so dividing (m - 1/4) into m² - m³ - 3/64 = 0 and we find the quadratic factors and we can solve that with the quadratic formula.

  • @JSSTyger
    @JSSTyger 3 месяца назад +1

    Well...I got the first solution by inspection
    m = 1/4
    Then I used (m-a)(m-b)(m-1/4) = 0 to get a cubic.
    Turn the resulting equation negative to get a coefficient of -1 for the m³ term.
    Next, set the coefficient of the m² term to be 1 and set the constant term equal to -3/64.
    You then solve two equations for the unknown "a" and "b", getting the final two solutions of m = (3±sqrt(21))/8

  • @electroScience-hb2100
    @electroScience-hb2100 3 месяца назад

    Muchas gracias Math Master por mostrar el paso a paso y los tricks matemáticos que demuestran la habilidad matemática que se debe tener para simplificar los cálculos y llegar a los 3 valores que satifacen la ecuación cúbica. Las demas persona que muestran otros trucos para simplificar la ecuacion desde el incio tambien demuestran tener habilidad matematica que se logra practicando y analizando ecuaciones en el papel no usando Mathlab. Gracias a todos los entusiastas de las matemáticas por mostrar sus conocimientos y compartirlos para todos. Estuvo genial la musica Andina de Fondo.

  • @TheDavidlloydjones
    @TheDavidlloydjones 2 месяца назад +1

    1/4, by inspection.

  • @lakroufali3633
    @lakroufali3633 2 месяца назад +2

    m3 is complex number.

  • @AliNazari-qu3wy
    @AliNazari-qu3wy 3 месяца назад +1

    I can solve it ❤❤❤❤❤

  • @pulinmedhi542
    @pulinmedhi542 3 месяца назад +1

    m2-m2= 0

  • @mohammedkamal3365
    @mohammedkamal3365 3 месяца назад +4

    ارسمي خط الكسر قبل كتابة العناصر الرقمية .

  • @electroScience-hb2100
    @electroScience-hb2100 3 месяца назад +1

    Thanks a lot Math Master for showing the step by step and mathematical tricks that demonstrate the mathematical ability that must be had to simplify the calculations and arrive at the 3 values ​​that satisfy the cubic equation. The other people who show other tricks to simplify the equation from the beginning also demonstrate mathematical ability that is achieved by practicing and analyzing equations on paper not using Mathlab. Thanks to all the math enthusiasts for showing your knowledge and sharing it for everyone. The Andean Music in the background was also perfect.

    • @haiderlughmani
      @haiderlughmani  3 месяца назад

      Thank you so much for your kind words.

  • @AbdelkaderBouchoucha
    @AbdelkaderBouchoucha 3 месяца назад

    ممتاز GOOD

  • @shakirhamoodi5009
    @shakirhamoodi5009 3 месяца назад +1

    m= 1/4

  • @KhinMaungSan-qc9uv
    @KhinMaungSan-qc9uv 3 месяца назад +2

    m^2--(m^3/2)^2=4/64--1/64=(1/4)^2--(1/8)^2

  • @KunNicolas
    @KunNicolas 3 месяца назад +1

    By these video, you get a perfect example what happens, when an unprofessional amateur starts to "teach" mathematics... Calling himself "math master" and his standard school polynomial equation as an "olympiad" task...

  • @UygunMannonov
    @UygunMannonov 2 месяца назад

    Энг кийин йол экан соддарок варианти бору

  • @Utuber-j2g
    @Utuber-j2g 3 месяца назад +1

    5:52How was m+1/4 omitted?

  • @zohorvat
    @zohorvat 3 месяца назад +1

    Ez nem megoldás. Ez nem más, mint a megsejtés igazolása.
    Szornyű, hogy ez a tudálékos okoskodás kering.

  • @Quest3669
    @Quest3669 3 месяца назад +4

    4/64-1/64.

  • @wladlukas4092
    @wladlukas4092 3 месяца назад +1

    m^2+m^3=5,625. m=?

  • @serunjogihenry9158
    @serunjogihenry9158 3 месяца назад +1

    I'm lost sir , I won't attend the class for today

  • @edsoncarlosdias2196
    @edsoncarlosdias2196 3 месяца назад +2

    Didática zero.... Nem dá para acompanhar....

  • @청량-n7e
    @청량-n7e 3 месяца назад +1

    괄호도 제대로 못 맞추는 수준이라니...

  • @guidodalessio6503
    @guidodalessio6503 3 месяца назад +1

    Nei vari passaggi ti sei perso una parentesi 😅

  • @fundadorwc7002
    @fundadorwc7002 3 месяца назад

    m3 no puede ser solución. m3 es negativo y las soluciones tienen que estar en el intervalo (0,1)

  • @نجمالصكر
    @نجمالصكر 3 месяца назад

    Bravo

  • @sandytanner9333
    @sandytanner9333 3 месяца назад +1

    0.25 or circa -0.1978