Can you find area of the Pink shaded region? | (Quarter Circle) |

Поделиться
HTML-код
  • Опубликовано: 3 фев 2025

Комментарии • 59

  • @adogonasidecar1262
    @adogonasidecar1262 6 месяцев назад +8

    Pretty cool that we can compute the area with so little information. At first it feels like we would need more ...

    • @trumpetbob15
      @trumpetbob15 6 месяцев назад +8

      Not only that, but I realized the diagram itself is drawn in a way that makes the problem more difficult. Since we don't have any measurements for the size of the circles, there is nothing stopping us from shrinking the smaller circle to an area of 0 units by moving the line AB down to the diameter, passing through point D. Thus, you have a fully pink quarter circle with radius 18, a white circle with area of 0, and the same final result of 81*PI (18*18*PI/4).

    • @PreMath
      @PreMath  6 месяцев назад +1

      Excellent!
      Thanks for the feedback ❤️

    • @BKNeifert
      @BKNeifert 6 месяцев назад

      Well, just look at the shapes, and see it has to be. The circle is limited as a shape, so to have a full circle within a semicircle on a tangent of a chord of 18, it would necessarily have to be that way, as it's the only possible way they can fit together, if the circle also has a tangent on the diameter.

    • @adogonasidecar1262
      @adogonasidecar1262 6 месяцев назад +2

      @@BKNeifert Of course I can understand the degrees of freedom and why no more information is required. My point is that it's not the first thing that comes to mind, it takes a couple seconds to figure it out. And that's pretty cool

    • @adogonasidecar1262
      @adogonasidecar1262 6 месяцев назад +3

      @@trumpetbob15 Exactly. There is no unicity of solution in r and R, but unicity in the pink area

  • @Micboss1000
    @Micboss1000 6 месяцев назад +1

    cool problem with a clever solution, love it

  • @manuelantoniobahamondesa.3252
    @manuelantoniobahamondesa.3252 5 месяцев назад

    Muy simpático su problema, gracias profe!

  • @zeroone7500
    @zeroone7500 6 месяцев назад +3

    1:21 C, P are collinear and P, D are collinear that doesn't mean all C, P, D are collinear. You can see if angle OAB is not = 90 degree then C, P, D are not collinear.

    • @ManojGupta-bp5ws
      @ManojGupta-bp5ws 6 месяцев назад

      Very true. Statement that point of contacts and centre are always collinear is wrong. But he is not replying. 😅

  • @timmcguire2869
    @timmcguire2869 6 месяцев назад +3

    Just shrink the small circle to radius equals zero. The pink area is then pi18sqr/4

  • @alokranjan4149
    @alokranjan4149 6 месяцев назад

    Beautiful problem ❤

  • @quigonkenny
    @quigonkenny 6 месяцев назад +2

    (On assumption that AB and OA are perpendicular)
    Let r be the radius of circle P and R be the radius of quarter circle O.
    As AB is tangent to circle P at C and OD is tangent to circle P at D, ∠PCA = ∠ODP = 90°. As ∠CAO and ∠AOD are also 90°, AODC is a rectangle, and CA = OD and DC = OA = 2r.
    As the pink shaded area is the area of quarter circle O minus circle P, the formula is πR²/4-πr², where as previously noted, R is the radius of O and r is the radius of P.
    Triangle ∆BAO:
    BA² + OA² = OB²
    18² + (2r)² = R²
    324 + 4r² = R²
    R² - 4r² = 324
    R²/4 - r² = 324/4 = 81
    πR²/4 - πr² = 81π
    Aᴘ = 81π sq units

  • @coyotejc1
    @coyotejc1 6 месяцев назад

    It is a beautiful solution.
    I had to watch it 4 times for it to make sense.

  • @murdock5537
    @murdock5537 6 месяцев назад

    Nice, many thanks, Sir! :-)

  • @BBMathTutorials
    @BBMathTutorials 6 месяцев назад

    🎉love to watch your videos sir❤

  • @murdock5537
    @murdock5537 6 месяцев назад

    Nice, many thanks, Sir! 🙂

  • @FriendSanjay
    @FriendSanjay 6 месяцев назад

    Fantastic

  • @patriciaceli1536
    @patriciaceli1536 6 месяцев назад

    Wow! Love this kind of problems! Gracias! ❤

  • @jamestalbott4499
    @jamestalbott4499 6 месяцев назад

    Thank you!

  • @Waldlaeufer70
    @Waldlaeufer70 6 месяцев назад

    When I come across one of the problems where it seems that the result does not depend on a specific size of a part, I tend to move things, so the problem gets easier to solve.
    In this case, I let r = 0, which makes the white circle disappear. So,
    R = 18
    A(pink) = R²/4 * π
    A(pink) = 18²/4 * π
    A(pink) = 18²/2² * π
    A(pink) = (18/2)² * π
    A(pink) = 9² * π
    A(pink) = 81 π
    In general, we can solve it the way you did it:
    Pythagoras:
    R² = 18² + (2r)²
    R² = 18² + 4r²
    4r² = R² - 18²
    r² = (R² - 18²) / 4
    Area:
    A(pink) = A(quarter circle) - A(white circle)
    A(pink) = (R²/4 - r²) π
    A(pink) = ((R² - R² - 18²) / 4) * π
    A(pink) = 18²/4 * π (for the rest see simplified solution)

  • @marioalb9726
    @marioalb9726 6 месяцев назад +1

    A = ¼. π c² = ¼ π 18²
    A = 81π cm² ( Solved √ )
    Shaded area is equal to a circle area of diameter 18 cm !!!!

  • @olesgaiduk5159
    @olesgaiduk5159 5 месяцев назад

    Ray OA intersects the great circle at point E. Let triangle EAB be Pythagorean. AB = 18, EA = 13.5; EB = 22.5 Mirroring line ОАЕ, we add a quarter circle. We construct an isosceles triangle, where ВВ’ = 2АВ = 18*2 =36; ЕВ’ = ЕВ . The area of this triangle S_ ЕВВ’ = 0.5*ЕА * ВВ’ = 0.5*13,5* 36 = 243. The radius of the great circle R = (ЕВ’ * ЕВ *В’В) /4S_ ЕВВ’ = 22,5*22,5*36 / 4*243 = 18,75 ; The area of the quarter of the great circle Sb = 0.25 π R^2 =0.25 π (18,75)^2 = 87,89 π; The radius of the small circle r = 0.5(R - ЕА) = 0.5 (18,75 - 13,5) = 2,625; The area of the small circle Sr = π r^2 = π 2,625^2 = 6,89 π. The area of the pink circle Sp = Sb - Sr = 87,89 π- 6,89 π = 81 π.

  • @KipIngram
    @KipIngram 4 месяца назад

    81*pi. This is an easy one - the white circle radius is not specified, so just make it 0 and carry that 18 down to the horizontal axis, where it becomes the radius. Now the whole quarter circle is pink, so we just have pi*18^2/4.

  • @BKNeifert
    @BKNeifert 6 месяцев назад

    That's clever. I was racking my brain to figure out why you were going about it that way.

  • @devondevon4366
    @devondevon4366 6 месяцев назад

    81 pi
    Let the radius of the quarter circle = N
    then its area = pi N^2/4
    Let the radius of a small circle = r
    the its area = pi r^2
    Hence, area of shaded region = pi N^2/4 - pi r^2
    = piN^2/4 - 4pi r^2/4 give both a common denominator of 4
    pi/4 (N^2 - 4 r^2) This is the area of the shaded region in terms of both radii
    Construct a right triangle by drawing a line from the end of line 18 to the center of the quarter circle.
    The sides are N (the hypotenuse), 18, and 2r (since the small circle distance on that line = diameter, which is twice the radiusZ0
    Employing Pythagorean
    N^2= 18^2 + (2r)^2
    N^2 = 324 + 4 r^2
    N^2 - 4r^2 = 324 (subtract 4r^2 from both sides of the equation). Equation B
    The reason to put it in this form is that it has something in common with pi/4 (N^2- 4r^2), which is an area of the shaded region, which is what we are trying to find
    Hence, pi/4 ( N^2 -4 r^2) = pi/4 ( 324)
    = pi (324/4
    = pi (81) answer

  • @als2cents679
    @als2cents679 6 месяцев назад

    Since the answer is a constant, just keep everything the same but choose R such that the circle is exactly inscribed into the quarter circle. Then calculate the pink area.

  • @suntipongvisetchaisri9084
    @suntipongvisetchaisri9084 6 месяцев назад

    Picture of complete. This method must be done

  • @marioalb9726
    @marioalb9726 6 месяцев назад +1

    Red circle:
    A = ¼πR² --> Quarter circle
    4A = πR² --> Whole circle
    White circle tangent to R:
    A = πr²
    New x4 bigger white circle, concentric to red circle:
    4A = 4πr² = π(2r)²
    Area of Red circular ring:
    A = A₁ - A₂ = πR² - π(2r)²
    A = ¼πc² = ¼π36²
    A = 324π cm²
    Area of Red Quarter Circular ring:
    A = ¼A = 81π cm² ( Solved √ )
    Red Shaded area is equal to area of quarter circular ring (with white circle turned into a white concentric quarter circle with same area)

  • @sorourhashemi3249
    @sorourhashemi3249 3 месяца назад

    I love it. The right answer is 254.34

  • @jacquespictet5363
    @jacquespictet5363 5 месяцев назад

    (1) It could be worth mentioning that the result is independant of both radius and why; (2) Points C and D play no role here.

  • @ВикторШеховцов
    @ВикторШеховцов 6 месяцев назад

    Респект! Интересное задание! Странно лишь, что Вы так долго расписываете решение! Возможно это потому, что Вам нет необходимости готовить учеников к Российскому ЕГЭ! Мне приходится учить не просто решать, но по возможности решать быстрее!👍🙂

  • @ВикторШеховцов
    @ВикторШеховцов 6 месяцев назад

    Respect! An interesting task! The only strange thing is that you take so long to describe the solution! Perhaps this is because you do not need to prepare students for the Russian Unified State Exam! I have to teach not just to solve, but to solve as quickly as possible!🙂👍

  • @wackojacko3962
    @wackojacko3962 6 месяцев назад

    Of 247 shades of pink you had too pick the one I'm color blinded of. And it's not on the visible light spectrum . So no worries, I have my handy spectrophotometer by my side at all times. Proceeded to readily solve. 🙂

  • @ManojGupta-bp5ws
    @ManojGupta-bp5ws 6 месяцев назад

    At 1:21, your statement that centre and point of contacts are collinear is totally wrong. So your solution is correct only and only if angle OAB is 90 degree.
    So don't make fool . first answer my point.dont ignore it

  • @Birol731
    @Birol731 6 месяцев назад

    My way of solution ▶
    If we draw a line through point P and OB, it would be equal to the radius (R) of the quarter circle, so:
    [OB]= R
    [BA]= 18
    [AO]= 2r
    if we apply the Pythagorean theorem for the ΔOBA, we get:
    [OB]²= [BA]²+[AO]²
    R²= 18²+(2r)²
    R²= 324 + 4r²
    R²-4r² = 324........(1)
    the pinkt area, Apink
    Apink= πR²/4 - πr²
    Apink= π(R²/4 - r²)
    if we take the equation (1) and divide by 4 we get:
    R²-4r² = 324
    R²/4 - r²= 81
    multiplied by π :
    π(R²/4 - r²)= 81π

    Apink= 81π
    Apink ≈ 254,469 square units

  • @emilioricou
    @emilioricou 6 месяцев назад

    Parece fácil despues de explicado

  • @marcgriselhubert3915
    @marcgriselhubert3915 6 месяцев назад

    In an orthonormal center O and first axis (OD) the equation of the big circle is x^2 + y^2 = R^2, with R its radius.
    At point B we have x = 18, so y = sqrt(r^2 - 18^2).
    Sqrt(R^2 - 18^2) is also the ordinate of C and the diameter of the little circle, so the radius of the little circle is
    r = (1/2).sqrt(R^2 - 18^2) and its area is (Pi/4).(R^2 - 18^2)
    The area of the big quater circle is (Pi/4).R^2
    So, by difference, the pink area is (Pi/4).(18^2) = 81.Pi.

  • @santiagoarosam430
    @santiagoarosam430 6 месяцев назад

    π18²/4=81π.
    La corona circular delimitada por dos círculos concéntricos de radios OB y CD tiene una superficie 4 veces mayor que el área rosa de la figura propuesta, puesto que esa es la razón entre las áreas de los círculos de radios CD y PD.
    Gracias y saludos.

  • @himo3485
    @himo3485 6 месяцев назад

    CP=PD=r AO=CD=2r
    (2r)²+18²=R² 4r²+324=R²
    Pink area = R²π/4 - r²π = (4r²+324)π/4 - r²π = 81π

  • @giuseppemalaguti435
    @giuseppemalaguti435 6 месяцев назад

    R^2=(2r)^2+18^2=4r^2+324.. .Apink=πR^2/4-πr^2=π324/4=π81

  • @phungpham1725
    @phungpham1725 6 месяцев назад

    1/ Draw the full circle
    Let R and r be the radius of the big and small circle.
    By using chord theorem
    sq AB= (R+OA)(R-OA)
    Or sq18=(R+2r)(R-2r)=sqR- 4sqr
    -> sqR/4 -sqr = sq18/4=81
    -> pi. sqR/4-pi.sqr=81.pi
    Area of the red region= 81.pi sq units😅😅😅

  • @prossvay8744
    @prossvay8744 6 месяцев назад

    Let R is a Radius quarter circle ; and r is a small circle.
    Pink area=1/4(π)(R^2)-πr^2=π(R^2/4-r^2)
    OA =CD=2r
    Connect O to B
    OA^2+AB^2=OB^2
    (2r)^2+(18)^2=R^2
    4r^2+324=R^2
    So R^2/4-r^2=81 square units
    So Pink area=81π square units.❤❤❤

  • @unknownidentity2846
    @unknownidentity2846 6 месяцев назад

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Today we do not think outside the box, but we think outside the quarter circle. If we think of a complete big circle instead of a quarter circle only, we can apply the intersecting chords theorem. With R being the radius of the quarter circle and r being the radius of the circle inside the quarter circle we obtain:
    18*18 = (R + 2*r)*(R − 2*r)
    18*18 = R² − 4*r²
    18*18/4 = R²/4 − r²
    81 = R²/4 − r²
    Now we are able to calculate the area of the pink region:
    A = A(quarter cirle) − A(circle) = πR²/4 − πr² = π*(R²/4 − r²) = 81π
    Best regards from Germany

  • @mega_mango
    @mega_mango 6 месяцев назад

    81 pi

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 6 месяцев назад

    STEP-BY-STEP RESOLUTION PROPOSAL (Integer Solutions) :
    01) Let : R = Radius of Quarter of Big Circle
    02) Let : r = Radius of Small Circle
    03) Let : D = Diameter of Small Circle
    04) r = (D / 2) or D = 2r
    05) Pink Area (PA) = ((Pi * R^2) / 4) - (Pi * r^2) sq un ; PA = (Pi * (R^2 / 4 - r^2)) ; PA = Pi * ((R^2 / 4) - (4r^2 / 4)) ; PA = Pi * [((R^2 - 4r^2) / 4] sq un
    06) As : D = 2r one can conclude that D^2 = 4r^2
    07) One can see by the Picture that : (R^2 - D^2) = 18^2 ; (R^2 - D^2) = 324. And, as D = 2r : (R^2 - 4r^2) = 324
    08) As : PA = Pi * [((R^2 - 4r^2) / 4] sq un
    09) PA = Pi * (324 / 4) sq un ; Pa = (Pi * 81) ; PA = 81Pi sq un
    Therefore,
    OUR BEST ANSWEWR :
    The Pink Area is equal to 81Pi Square Units. Or, if you want, approx. equal to 255 Square Units.
    Best Wishes from "The Great Islamic Institute of Mathematical Sciences" in Cordoba Caliphate.

  • @h.g.buddne
    @h.g.buddne 6 месяцев назад

    I like this content creator. But on which part of the planet did he learn to write pi like that? 🫣
    My teacher would have gone nuts😂

  • @devondevon4366
    @devondevon4366 6 месяцев назад

    81 pi