Can you find the Radius of the circle? | (Chord) |

Поделиться
HTML-код
  • Опубликовано: 31 янв 2025

Комментарии • 66

  • @sardarstationers2165
    @sardarstationers2165 4 месяца назад +2

    Nice Explanation.

    • @PreMath
      @PreMath  4 месяца назад

      Glad it was helpful!
      Thanks for the feedback ❤️

  • @terryshell9045
    @terryshell9045 4 месяца назад +1

    Good problem. Excellent explanation.

  • @marioalb9726
    @marioalb9726 4 месяца назад +4

    Intersecting chords theorem:
    6 . x = 18 . 5 --> x = 15cm
    c = x + 6 = 21cm
    Intersecting chords theorem again:
    (R+13/2)(R-13/2)= (c/2)²
    R² - (13/2)² = (21/2)²
    R² = 10,5² + 6,5²
    R = 12,349 cm ( Solved √ )

    • @PreMath
      @PreMath  4 месяца назад +1

      Thanks for sharing ❤️

  • @MrPaulc222
    @MrPaulc222 4 месяца назад +3

    Extend DC to the top of the circumference and call that point E.
    DE = 23 (when comparing to AB's 13).
    DE's midpoint is M.
    OME is a right triangle with sides x, 23/2. and r.
    N is the midpoint of AB>
    Right triangle ANO has sides x+6, 13/2, and r.
    Find x:
    x^2 + (23/2)^2 = (x + 6)^2 + (13/2)^2, because both = r^2.
    x^2 + 529/4 = x^2 + 12x + 36 + 169/4
    529/4 = 12x + 36 + 169/4
    529 = 48x + 144 + 169
    529 = 48x + 313
    48x = 216
    Reduce: 12x = 54
    Again: 2x = 9
    Again: x = 4.5 or 9/2 if preferred.
    You now have 2 right triangles, each containing r. One to calculate and another to verify.
    First: x, 23/2, and r
    (9/2)^2 + (23/2)^2 = r^2
    81/4 + 529/4 = 610/4 = r^2
    Try the second before square rooting, in case it's wrong:
    x + 6 = 10.5 or, if preferred, 21/2.
    (21/2)^2 = 441/4.+ 169/4 = 610/4 = r^2
    Both calculations give r^2 = 610/4
    r = sqrt(610)/2
    It's not immediately clear if any square numbers (other than 1), are factors, so I will look up sqrt(610) as it stands.
    24.7 looks to be a reasonable approximation, so I will try my luck with
    r = 12.35.
    It looks thereabouts, so I will look at the video now.
    Well, I got it right, but did cause myself a couple of extra calculations - though we broadly used the same method.

    • @PreMath
      @PreMath  4 месяца назад +2

      Excellent!
      Thanks for sharing ❤️

  • @scottdort7197
    @scottdort7197 4 месяца назад +4

    Alternatively. 13/2=6.5. 18-6.5=11.5. 11.5*2=23. 23-18=5.
    Use chord product theorem 5*18=6*X. X must equal 15.
    Use the RMS technique to solve for r.
    r=(5^2+6^2+15^2+18^2)^.5/2=610^•5/2 or approximately 12.3491 or 12.35 as Premath stated.

    • @imetroangola17
      @imetroangola17 4 месяца назад +1

      5×18=6×X→ X=16??? 😢😢😢😢, X=15. Redo your calculations again.

    • @imetroangola17
      @imetroangola17 4 месяца назад +1

      Chord theorem: If two chords CD and AB are perpendicular at point O, the following property holds:
      AO² + OB² + OD² + OC² = (2R)², where R is the radius of the circle.

    • @PreMath
      @PreMath  4 месяца назад +1

      Thanks for the feedback ❤️

    • @scottdort7197
      @scottdort7197 4 месяца назад +2

      @@imetroangola17 sorry. Typo. Corrected.

    • @imetroangola17
      @imetroangola17 4 месяца назад

      ​@@scottdort7197OK, no problem!

  • @uwelinzbauer3973
    @uwelinzbauer3973 4 месяца назад +1

    Nice geometry question-
    I wish you a happy Sunday 😊

  • @susanalabbe2433
    @susanalabbe2433 2 месяца назад

    excellent thanks a lot

  • @santiagoarosam430
    @santiagoarosam430 4 месяца назад +6

    Prolongamos DC y AC y obtenemos las cuerdas DE=DC+CE y AF=AC+CF → CE=CD-AB=18-13=5 → Potencia de C respecto a la circunferencia =5*18=6*CF→ CF=15→ BF²=AB²+AF² → (2r)²=13²+(6+15)²→ r=(√610)/2 =12,34908...ud.
    Gracias y un saludo cordial.

    • @imetroangola17
      @imetroangola17 4 месяца назад +1

      Você também pode usar esse teorema quando as cordas são perpendiculares. Note que o ponto C é onde ocorre perpendicularismo, logo:
      AC²+CF² + DC² + CE² = (2R)²

    • @PreMath
      @PreMath  4 месяца назад +1

      Excellent!
      Thanks for sharing ❤️

    • @phungpham1725
      @phungpham1725 4 месяца назад

      Thank you! I did it the same😅

  • @quigonkenny
    @quigonkenny 4 месяца назад +2

    Draw OM, where M is the point on chord AB where OM and AB are perpendicular. As AB is a chord and O is the center of the circle, OM bisects AB and AM = MB = 13/2. Let OM = x.
    Draw BE, where E is the point on DC where BE and DC are perpendicular. As ∠BEC = ∠ECA = ∠CAB = 90°, then ∠ABE = 360°-3(90°) = 90° as well and ABEC is a rectangle.
    As AB = EC = 13, DE = DC-EC = 18-13 = 5. Extend DC to intersect circumference at F and let the point where OM intersects chord DF be N. As ∠ONF = 90°, ON is a perpendicular bisector of both ABEC and DF, and thus by symmetry CF = DE = 5. DF = DC+CF = 18+5 = 23. DN = NF = 23/2. ON = OM-NM = x-6.
    Draw radii OB and OD, length r.
    Triangle ∆OMB:
    OM² + MB² = OB²
    x² + (13/2)² = r²
    r² = x² + 169/4 --- [1]
    Triangle ∆OND:
    ON² + DN² = OD²
    (x-6)² + (23/2)² = r²
    r² = x² - 12x + 36 + 529/4
    r² = x² - 12x + 673/4 --- [2]
    x² + 169/4 = x² - 12x + 673/4

    • @PreMath
      @PreMath  4 месяца назад +1

      Excellent!
      Thanks for sharing ❤️

  • @toninhorosa4849
    @toninhorosa4849 4 месяца назад +1

    Dear teacher. I liked the way you solved this problem. But I find another way.
    First I extended the line CD, from point C until it reached the top line of the circumference and marked the point "E". The chord ED was formed.
    I extended the line AC until it reached the other side of the circle and marked the point "F". The chord AF was formed.
    From point "B" I drew a parallel line to line AC until I met line CD and marked point "G".
    GD = CD - AB
    GD = 18 - 13 = 5
    EC = GD = 5
    Then the relationship below is valid:
    EC*CD = AC*CE
    5*18 = 6*CE
    CE = 90/6
    CE = 15
    And:
    AE = 6+15 = 21
    The midpoint of AE is "M" so that AM = ME = 21/2.
    The midpoint of AB is "N" só that AN = NB = 13/2.
    Then applying Pythagoras in ∆ANO
    AO = R (radius)
    AN = 13/2
    NO = AM = 21/2
    R^2 = (13/2)^2 + (21/2)^2
    R^2 = 169/4 + 441/4
    R^2 = 610/4
    R = (√610)/2 units^2.

    • @PreMath
      @PreMath  4 месяца назад

      COOL!
      Thanks for sharing ❤️

  • @南雲誠一
    @南雲誠一 4 месяца назад

    Extend DC to the top of the circumference and call that point E.
    Extend AC to the right of the circumference and call that point F.
    AC x CF = DC x CE -> 6 x CF = 18 x 5 then CF = 15. AF = 21
    Triangle ABF is right triangle in circle. so BF is diameter.
    BF = √(21²+13²)
    Radius is BF/2 ...

  • @jamestalbott4499
    @jamestalbott4499 4 месяца назад +1

    Thank you!

    • @PreMath
      @PreMath  4 месяца назад

      You are very welcome!
      Thanks for the feedback ❤️

  • @lasalleman6792
    @lasalleman6792 День назад

    Use the intersecting chord theorem. Line CD (18) is extended upwards by 5 units where it intersects with the circle.. Line AC (6)as extended to the intersection of the circle on the right, becomes x . Following the theorem 18 * 5 = 6 * x. Products of both sides of the equation are equal. x turns out to be 15. Then create a right triangle. Line AB =13 is one leg of the triangle, The other leg is 21. (15 +6). The hypotenuse equals 610, and the square root of 610 is 24.6981. On half of this amount gives a final radius of 12.349

  • @giuseppemalaguti435
    @giuseppemalaguti435 4 месяца назад +2

    R^2=6,5^2+(6+a)^2...a^2=R^2-11,5^2...calcolo a=4,5...R^2=152,5

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @rabotaakk-nw9nm
    @rabotaakk-nw9nm 4 месяца назад

    6:08-7:52 169/4, 529/4, 144/4, 216/4 ? 😮
    12x=(23/2)²-(13/2)²-36=
    =(23/2+13/2)(23/2-13/2)-36=
    =(36/2)(10/2)-36=
    =18•5-36=90-36=54 😁

  • @marcgriselhubert3915
    @marcgriselhubert3915 4 месяца назад

    We choose an orthonormal center A and first axis (AC). Then A(0; 0), B(0; -13), and D(6; -18) are on the circle.
    The equation of the circle is x^2 + y^2 + a.x + b.y + c = 0.
    A is on the circle so c = 0, B is on the circle, so 169 -13.b = 0 and so b = 13, D is on the circle, so 36 + 324 +6.a -18.13 = 0 and so a = -21
    The equation of the circle is then x^2 + y^2 +13.x - 21.y = 0 or (x +(13/2)^2 + (y -(21/2)^2 = (13/2)^2 + (21/2)^2.
    If R is the radius of the circle, then R^2 = (13/2)^2 = (21/2)^2 = 610/4, and R = sqrt(610)/2

  • @marioalb9726
    @marioalb9726 4 месяца назад +1

    Easiest solution
    Intersecting chords theorem:
    6 . x = 18 . 5 --> x = 15 cm
    Pytagorean theorem:
    (2R)² = c₁² + c₂²
    (2R)² = 13² + (6+x)²
    R = 12,349 cm ( Solved √ )

    • @marioalb9726
      @marioalb9726 4 месяца назад

      Intersecting chords theorem:
      6 . x = 18 . 5 --> x = 15 cm
      Quadratic mean, of the chords:
      (2R)² = c₁² + c₂²
      (2R)² = (18²+6²)+(5²+15²)
      R = 12,349 cm ( Solved √ )

    • @PreMath
      @PreMath  4 месяца назад

      Thanks for sharing ❤️

  • @marioalb9726
    @marioalb9726 4 месяца назад +1

    Cyclic quadrilateral:
    a = 13 cm
    b = 18 + (18-13) = 23 cm
    c=d = √(6²+5²) = √61cm
    p = a+b+2c = 51.62 cm
    A² = (½p-a).(½p-b).(½p-c)²
    A² = 12,81x2,81x18²
    A = 108 cm²
    Circumference:
    (4R.A)²=(ab+cd)(ac+bd)²
    (4R.A)²= 360 x 79056
    R = 12,349 cm ( Solved √ )
    First is Brahmagupta's formula for cyclic quadrilateral areas
    Second is Parameshvara's formula for circumradius
    !! Both Indian mathematicians !!!
    Just as a point of interest, it's not the most practical solution

    • @marioalb9726
      @marioalb9726 4 месяца назад +1

      Intersecting chords theorem:
      6 . x = 18 . 5
      x = 15 cm
      c = x + 6 = 21 cm
      Intersecting chords theorem again:
      (R+13/2)(R-13/2)= (c/2)²
      R² - (13/2)² = (21/2)²
      R² = 10,5² + 6,5²
      R = 12,349 cm ( Solved √ )

    • @marioalb9726
      @marioalb9726 4 месяца назад +1

      Intersecting chords theorem:
      6 . x = 18 . 5 --> x = 15 cm
      Quadratic mean, of chords:
      (2R)² = c₁² + c₂²
      (2R)² = (18²+6²)+(5²+15²)
      R = 12,349 cm ( Solved √ )

    • @marioalb9726
      @marioalb9726 4 месяца назад +1

      Easiest solution:
      Intersecting chords theorem:
      6 . x = 18 . 5 --> x = 15 cm
      Pytagorean theorem:
      (2R)² = c₁² + c₂²
      (2R)² = 13² + (6+15)²
      R = 12,349 cm ( Solved √ )

    • @PreMath
      @PreMath  4 месяца назад

      Great!
      Thanks for sharing ❤️

  • @MrPaulc222
    @MrPaulc222 11 часов назад

    It's helpful to have multiple methods as you never know how much pre-existing info a question will provide.
    From C upwards is 5 when comparing to AB.
    18*5 = 6a
    x = 15.
    Make a rectangle within the circle with sides 13,21,13,21.
    Multiply in pairs then add: 169 + 441.
    Apparently, this gives 4r^2
    610 = 4r^2.
    610/4 = r^2
    sqrt(610)/2 = r = 12.35
    Thats a way I only saw recently

  • @tontonbeber4555
    @tontonbeber4555 4 месяца назад

    Brute force
    Circle equation x²+y²+ax+by+c = 0
    3 points on the circle : (0,0),(0,-13),(6,-18) => find a,b,c :
    c=0
    169-13b = 0 => b = 13
    36+324+6a-234 = 0 => a=-21
    x²-21x + y²+13y = 0
    (x-10.5)² + (y-6.5)² = 10.5²+6.5²
    radius is V(10.5²+6.5²) = 12.349

  • @imetroangola17
    @imetroangola17 4 месяца назад

    *_Outra maneira de fazer essa questão:_*
    Se eu conseguir formar um triângulo numa circunferência, eu posso usar a fórmula:
    S=abc/4R, onde S é a área do triângulo, a, b e c são os lados e, por fim, R é o raio da circunferência.
    É possível formar o triângulo ABD, onde podemos encontrar a área S, da seguinte maneira:
    S=AC×AB/2=6×13/2= *3×13*
    Seja P o pé da perpendicular em relação ao lado CD, logo BP=6 e PD=18-13=5. Assim,
    BD²=BP²+PD²→BD²=5²+6²=61→ *BD=√61.* Por outro lado,
    AD²=AC²+CD²=6²+18²=360
    *AD=6√10*
    Assim,
    S=AD×BD×AB/4R
    3×13=(6×√10×√61 ×13)/4R
    1=(2×√10×√61)/4R
    1=(√10×√61)/2R
    1=(√610)/2R
    *R=(√610)/2*

  • @Birol731
    @Birol731 4 месяца назад +1

    My way of solution ▶
    E ∈ [AB]
    for the right triangle ΔEOA we can write the Pythagoren theorem
    [AE]²+[EO]²= [OA]²
    [AE]= 13-z
    [EO]= 6+y
    [OA]= r

    (13-z)²+(6+y)²= r²
    for the right triangle ΔBOE we can write the Pythagoren theorem:
    [OE]²+[EB]²= [BO]²
    [OE]= 6+y
    [EB]= z
    [OA]= r

    (6+y)²+z²= r²

    (13-z)²+(6+y)²= (6+y)²+z²
    (13-z)²= z²
    169-26z+z²= z²
    169= 26z
    z= 13/2
    II) Let's take a point between C and D : F ∈ [CD] and [FD] ⊥ [BF]
    if [AB]= [CF]= 13
    [FD]= 18-13
    [FD]= 5
    Also, G ∈ [CD] and [CG] ⊥ [EG]
    [OG]= y
    By applying the Pythagorean theorem for the ΔDOG, we get
    [OG]²+[GD]²= [DO]²
    [OG]=y
    [GD]= z+5
    [GD]= 13/2+ 5
    [DO]= r

    y²+(13/2+5)²= r²
    we also know that:
    (6+y)²+z²= r²
    (6+y)²+(13/2)²= r²

    y²+(13/2+5)²= (6+y)²+(13/2)²
    y²+169/4+65+25= 36+12y+y²+169/4
    12y= 90-36
    y= 54/12
    y= 9/2

    r²= y²+(13/2+5)²
    r²= (9/2)²+(13/2+5)²
    r²= 81/4 + 169/4+ 65+25
    r²= 250/4+ 90
    r²= 610/4
    r= √(610/4)
    r= √610/2
    r ≈ 12,349 length units

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @wackojacko3962
    @wackojacko3962 4 месяца назад +2

    I wrote a Compare and Contrast essay on a problem similar to this one just because the English teacher wasn't a mathematician. She didn't understand a word of it. 🙂

    • @PreMath
      @PreMath  4 месяца назад +1

      Wow!😀
      Thanks for sharing ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 4 месяца назад +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) Let's call the Line from Point O to the Big Chord, X
    02) X^2 + (23/2)^2 = R^2
    03) (X + 6)^2 + (13/2)^2 = R^2
    04) X^2 + 529/4 = (X + 6)^2 + 169/4
    05) X^2 + 529/4 = X^2 + 12X + 36 + 169/4
    06) 12X = 529/4 - 169/4 - 36
    07) 12X = 360/4 - 144/4
    08) X = 216/48 ; X = 9/2
    09) Using Formula on Item 2) : R^2 = 81/4 + 529/4 ; R^2 = 610/4 ; R^2 = 305/2 ; R = sqrt(305/2)
    10) R ~ sqrt(152,5) ; R ~ 12,35
    Therefore,
    OUR BEST ANSWER :
    The Radius is equal to sqrt(305/2) Linear Units or approx. equal to 12,35 Linear Inits.

    • @PreMath
      @PreMath  4 месяца назад +1

      Great!
      Thanks for sharing ❤️

  • @JSSTyger
    @JSSTyger 4 месяца назад

    I'll say r = sqrt(305/2)

  • @unknownidentity2846
    @unknownidentity2846 4 месяца назад

    Let's find the radius:
    .
    ..
    ...
    ....
    .....
    Let's assume that O is the center of the coordinate system and that AB and CD are parallel to the y-axis. In this case AC must be parallel to the x-axis. Since A and D are located on the circle, with R being the radius of the circle we can conclude:
    xA² + yA² = R²
    xD² + yD² = R²
    The x-axis is perpendicular to AB, so it intersects this chord exactly at its midpoint. Therefore we know that yA=AB/2=13/2. From the known lengths of AC and CD we obtain:
    xD = xC = xA + 6
    yD = yC − CD = yA − CD = 13/2 − 18 = 13/2 − 36/2 = −23/2
    xA² + (13/2)² = R²
    (xA + 6)² + (−23/2)² = R²
    xA² + (13/2)² = (xA + 6)² + (−23/2)²
    xA² + 169/4 = xA² + 12*xA + 36 + 529/4
    −504/4 = 12*xA
    −126 = 12*xA
    ⇒ xA = −126/12 = −21/2
    Now we are able to calculate the radius of the circle:
    R² = xA² + yA² = (−21/2)² + (13/2)² = 441/4 + 169/4 = 610/4 = 305/2
    ⇒ R = √(305/2)
    Let's check this result:
    xD = xA + 6 = −21/2 + 6 = −21/2 + 12/2 = −9/2
    yD = −23/2
    R² = xD² + yD² = (−9/2)² + (−23/2)² = 81/4 + 529/4 = 610/4 = 305/2 ✓
    Best regards from Germany

    • @PreMath
      @PreMath  4 месяца назад

      Thanks for sharing ❤️

  • @Waldlaeufer70
    @Waldlaeufer70 4 месяца назад

    Intersecting Chord Theorem:
    6x = 13 (18 - 13)
    6x = 13 * 5 = 65
    x = 65/6
    Pythagors:
    r² = (13/2)² + [(65/6 + 6)/2]²
    r² = 169/4 + [(65/6 + 36/6)/2]²
    r² = 169/4 + [101/12]²
    r² = 169/4 + 10201/144 = 6084/144 + 10201/144 = 16285/144
    r = 10.63 units
    So, my result is different. Where's the mistake?

    • @AllmondISP
      @AllmondISP 4 месяца назад +1

      CD isn't a chord, neither AC. Both are part of a chord, but not a chord, so you can't use the Chord Theorem.

    • @marioalb9726
      @marioalb9726 4 месяца назад +2

      You wrote wrongly "13" instead of "18" !!! at the beginning
      Intersecting chords theorem:
      6 . x = 18 . (18-13)
      x = 15 cm
      c = x + 6 = 21 cm
      Intersecting chords theorem again:
      (R+13/2)(R-13/2)= (c/2)²
      R² - (13/2)² = (21/2)²
      R² = 10,5² + 6,5²
      R = 12,349 cm ( Solved √ )

    • @Waldlaeufer70
      @Waldlaeufer70 4 месяца назад

      @@AllmondISP Thanks, I always wondered where my mistake was. I guess I was too tired when I tried to solve the problem.

    • @Waldlaeufer70
      @Waldlaeufer70 4 месяца назад

      @@marioalb9726 Thank you very much. So, my way was not completely wrong, just wrong enough. ;)

    • @marioalb9726
      @marioalb9726 4 месяца назад +2

      @@Waldlaeufer70
      You was right choosing "intersecting chord theorem" method..
      You could even do it twice, as my answer shows

  • @wasimahmad-t6c
    @wasimahmad-t6c 4 месяца назад

    This math you riten see

  • @joeschmo622
    @joeschmo622 4 месяца назад +2

    ✨Magic!✨
    But they can never make the answers something simple, like, *3.* 🙄

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for the feedback ❤️

  • @michaeldoerr5810
    @michaeldoerr5810 4 месяца назад

    The radius is [sqrt(610)]/2. Looks like I shall use that as intermediate level geometry practice!!!

    • @PreMath
      @PreMath  4 месяца назад

      Good idea!
      Thanks for the feedback ❤️

  • @peterkrauliz5400
    @peterkrauliz5400 4 месяца назад +1

    Use Analytic Geometry for God's sake, man, and cross 2 perpendicular lines to get the center of the circle! This teacher doesn't like Analytic Geometry !