Can you find area of the Green shaded region? | (Trapezoid) |

Поделиться
HTML-код
  • Опубликовано: 2 ноя 2024

Комментарии • 56

  • @MrPaulc222
    @MrPaulc222 Месяц назад +3

    Perpendicular height of the green area is (3*sqrt(3))/2, due to the 30,60,90 on the left.
    The width of its base is 1/3 of the distance between 4 and 13, so the green base is 7.
    (7 + 4)/2 * (3*sqrt(3))/2
    (11/2) * 3*sqrt(3)/2
    (33/2) * sqrt(3)/2
    (33*sqrt(3))/4 un^2
    Decimal approximates to 14.29 un^2
    I have now checked the video. There were a few ways to tackle this one.
    Thank you.

    • @PreMath
      @PreMath  Месяц назад

      You are very welcome!
      Thanks for sharing ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 Месяц назад +2

    CD = EF + (EC/EA).(AB-EF) = 4 +(3/9).9 = 7. The green area is then ((EF+CD)/2).(EC.sin(60°)) = ((4+7)/2).(3.(sqrt(3)/2) = (33/4).sqrt(3). (Very quick!)

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @calvinmasters6159
    @calvinmasters6159 Месяц назад

    Slightly different method, same answer :
    Complete external left triangle. From memory, sin(30)= 0.5
    External triangle width is 9 x 0.5 = 4.5
    By subtraction, the right hand external triangle is also 4.5 wide. The trapezoid is symmetrical.
    Green rectangle is (1.5 + 4) * 2.6 = 14.29

  • @jamestalbott4499
    @jamestalbott4499 Месяц назад

    Thank you!

  • @santiagoarosam430
    @santiagoarosam430 Месяц назад +1

    AB=13=26/2=[(6+3)/2]+(8/2)+[(26-9-8)/2]=(9/2)+(8/2)+(9/2)---> Ángulos A=60º=B---> Área sombreada =[(3/2)+(8/2)]*(3√3/2)=33√3/4 ud².
    Gracias y saludos.

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @quigonkenny
    @quigonkenny Месяц назад +1

    Drop perpendiculars from E and F to AB at M and N respectively. EM and FN will intersect CD at J and K respectively.
    As ∠CJE = ∠AME = 90° and ∠ECJ = ∠EAM = 60°, being corresponding angles, ∆CJE and ∆AME are similar triangles. Similarly, ∠FKD = ∠FNB = 90° and ∠KDF = ∠NBF = θ, so ∆FKD and ∆FNB are similar triangles.
    As ∠EAM = 60°, ∆AME and ∆CJE are 30-60-90 special right triangles, so AM = AE/2 = (6+3)/2 = 9/2 and EM = FN = AM√3 = (9/2)√3 = 9√3/2. As EM and FN are parallel to each other and perpendicular to MN, JK, and EF, MN = JK = EF = 4. NB = AB-AM-MN = 13-9/2-4 = 26/2-17/2 = 9/2.
    As AM = NB = 9/2, EM = FN = 9√3/2, and ∠AME = ∠FNB = 90°, ∆AME and ∆FNB are congruent by SAS, and as EJ = FK, by similarity, ∆CJE and ∆FKD are congruent.
    KD = CJ = CE/2 = 3/2. FK = EJ = CJ√3 = (3/2)√3 = 3√3/2. CD = CJ+JK+KD = 3/2+4+3/2 = 7.
    Green Trapezoid CDFE:
    Aɢ = h(a+b)/2 = (3√3/2)(4+7)/2
    Aɢ = 3√3(11)/4 = 33√3/4 ≈ 14.29 sq units

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @phungpham1725
    @phungpham1725 Месяц назад +1

    Your solution is so impressive!
    Mine is a litte bit different😅
    1/ EA and FB intersect at point G.
    Label GE= a
    By triangle similarity, we have:
    GE/GA=EF/AB= 4/13
    -> a/(a+9) =4/13
    -> a= 4 -> the triangle GEF is an equilateral one and so is the triangle GDC ( and GAB)
    Area of the green trapezoid= Area of GDC- Area of GEF
    = sq7( sqrt3)/4 - sq4(sqrt3)/4
    = sqrt3/4 x (sq7-sq4)
    = 33sqrt3/4 sq units 😅😅😅

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @murdock5537
    @murdock5537 Месяц назад +1

    φ = 30° → EAB = ABF = 2φ → CP = DQ = 3/2 → green area = 9√3/4 + 6√3 = 33√3/4

    • @PreMath
      @PreMath  Месяц назад +1

      Excellent!
      Thanks for sharing ❤️

  • @sorourhashemi3249
    @sorourhashemi3249 Месяц назад

  • @cyruschang1904
    @cyruschang1904 Месяц назад +1

    base of the green = x + 4
    x = (13 - 4)/3 = 3
    height of the green = 3sin60° = (3✓3)/2
    green area = (4 + 4 + x)(3✓3)/4 = (33✓3)/4

    • @PreMath
      @PreMath  Месяц назад +1

      Excellent!
      Thanks for sharing ❤️

    • @cyruschang1904
      @cyruschang1904 Месяц назад +1

      @@PreMath Thank YOU for the math problem 🙏

  • @jarikosonen4079
    @jarikosonen4079 Месяц назад +1

    3:45 Since AE=AK=9 the AEK is isosceles.
    Angle KAE=60°, and angles AEK=EKA=(180°-60°)/2=60°.
    Triangle AEK is thus equilateral.
    So CT=CE=3...

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for the feedback ❤️

  • @danmike2305
    @danmike2305 Месяц назад

    Where do you find all these math problems. Very enjoyable.

  • @gagik9401
    @gagik9401 Месяц назад

    From from the similarity of triangles, it is much easier to find the area

  • @Hussain-px3fc
    @Hussain-px3fc Месяц назад

    Just another way to show variety: the big trapezoid area = the sum of the other smaller ones and by setting side CD= x and substituting on the above equation you get x=7 and then you can find the area.
    Thank you for the video ❤

    • @PreMath
      @PreMath  Месяц назад

      You are very welcome!
      Thanks for the feedback ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 Месяц назад +2

    By my calculations, it's isosceles trapezoid but it doesn't look like it

  • @santokhsidhuatla7045
    @santokhsidhuatla7045 Месяц назад

    H=9 Sin 60=7.7942
    Base= 9 cos60=3
    Total base=3+4+6=13
    Base of green area=1.5+4+2=7.5
    h for green area=3sin60=2.5981
    Area of green =(4+7)/2*2.5981
    =14.94 square units

  • @AmirgabYT2185
    @AmirgabYT2185 Месяц назад +2

    S=33√3/4≈14,289≈14,29 square units

    • @PreMath
      @PreMath  Месяц назад +1

      Excellent!
      Thanks for sharing ❤️

  • @wasimahmad-t6c
    @wasimahmad-t6c Месяц назад

    3×3-1.5×1.5=6.75squroot=2.598×5.5=14.2894

  • @michaeldoerr5810
    @michaeldoerr5810 Месяц назад

    The area is 1/4[33*sqrt(3)]. At the 2:10 mark, I think that I now know that drawing auxiliary lines is useful due to the arrows. While it is not drawn to scale, it helps to know how to draw the auxiliary lines *to scale* and this is probably why we got a AA similarity relation. I am wondering if a playlist of trapezium could be made or a playlist involving AA similarity relation could be made. Or "Think outside of the box". Just asking.

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for the feedback ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho Месяц назад +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) h = 3 * sin(60º) ; h = 3sqrt(3) / 2
    02) B = 7
    03) b = 4
    04) A = 11 * 3sqrt(3) / 4
    05) A = 33sqrt(3) / 4
    06) A = 8,25sqrt(3)
    07) A = 14,289 sq un
    08) NOTE : From AB to EF it follows : 13 ; 10 ; 7 ; 4
    Therefore,
    OUR ANSWER :
    The Area of Green Region is approx. 14,3 Square Units.

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @Birol731
    @Birol731 Месяц назад

    My way of solution ▶
    Let's consider point G between A and B
    G ∈ [AB] and [AG] ⊥ [EG]
    cos(60°)= [AG]/[EA ]
    [EA]= 9 lenght units

    1/2= [AG]/9
    [AG]= 9/2
    sin(60°)= [EG]/[EA ]
    [EA]= 9 lenght units

    √3/2= [EG]/9
    [EG]= 9√3/2
    By considering point H between A and B
    H ∈ [AB] and [HB] ⊥ [FH]
    [HB]= [AB] - [AG] - [GH]
    [HB]= 13 - (9/2) - 4
    [HB]= 9/2

    [HB]= [AG]= 9/2
    [EG]= [FH]= 9√3/2

    ΔEAG = ΔFHB

    ∠HBF= 60°
    By considering point P between C and D
    P ∈ [CD] and [CP] ⊥ [EP]
    we also see that ∠ECP= 60°

    cos(∠ECP)= [CP]/[EC]
    1/2= [CP]/3
    [CP]= 3/2

    [KD]= 3/2
    K ∈ [CD] and [KD] ⊥ [FK]
    It is seen that: ΔEAG ~ ΔECP
    [CP]/[AG]= [EP]/[EG]
    (3/2)/(9/2)= [EP]/9√3/2
    [EP]= 3√3/2

    A(ECDF)= ([EF]+[CD])*EP/2
    [EF]= 4
    [CD]= (3/2)+4+(3/2)
    [CD]= 7
    [EP]= 3√3/2

    A(ECDF)= (4+7)* 3√3/2 /2
    A(ECDF)= 33√3/4
    A(ECDF) ≈ 14,29 square units

  • @JSSTyger
    @JSSTyger Месяц назад

    I would say the middle horizontal line has length 7....(1.5+4+1.5) and that yields and area of 33sqrt(3)/4

    • @PreMath
      @PreMath  Месяц назад +1

      Thanks for the feedback ❤️

  • @sergeyvinns931
    @sergeyvinns931 Месяц назад

    А=33\/3/4.

  • @unknownidentity2846
    @unknownidentity2846 Месяц назад +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    First of all we extend the lines AE and BF such that they intersect. May G be the point of intersection. According to the intercept theorem we can conclude:
    AG/EG = AB/EF
    (AC + CE + EG)/EG = AB/EF
    (6 + 3 + EG)/EG = 13/4
    (9 + EG)/EG = 13/4
    4*(9 + EG) = 13*EG
    36 + 4*EG = 13*EG
    36 = 9*EG
    ⇒ EG = 4
    CG/EG = CD/EF
    (CE + EG)/EG = CD/EF
    (3 + 4)/4 = CD/4
    ⇒ CD = 3 + 4 = 7
    Since AB and CD are parallel to each other, we obtain ∠DCE=∠BAC=60°. Therefore the height h of the green trapezoid turns out to be:
    h/CE = sin(∠DCE)
    h/3 = sin(60°)
    h/3 = √3/2
    ⇒ h = 3√3/2
    Now we are able to calculate the area of the green trapezoid:
    A(CDEF) = (1/2)*(CD + EF)*h = (1/2)*(7 + 4)*3√3/2 = 33√3/4 ≈ 14.29
    Best regards from Germany

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @mohanramachandran4550
    @mohanramachandran4550 Месяц назад

    Very Simple Sum

    • @PreMath
      @PreMath  Месяц назад

      Thanks for the feedback ❤️

  • @misterenter-iz7rz
    @misterenter-iz7rz Месяц назад +2

    a/4=(a+9)/13, 13a=4a+36, a=4, then CD=7, the area is 1/2(49-16)sin 60=33sqrt(3)/4.😊

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @wackojacko3962
    @wackojacko3962 Месяц назад +1

    Before my lawn goes dormant for the winter I gotta paint it Green . It's Trapezoidal shaped so I have too calculate the area so I know how much paint I need. Perfect timing for this video too come up. 🙂

    • @PreMath
      @PreMath  Месяц назад +1

      Sounds great!😀
      Thanks for the feedback ❤️

    • @phungpham1725
      @phungpham1725 Месяц назад

      😊

  • @Mehmetbilendegilypo
    @Mehmetbilendegilypo Месяц назад

    33r3÷4 😊

  • @himadrikhanra7463
    @himadrikhanra7463 Месяц назад

    9 square unit ?

  • @shrijjithnatakala
    @shrijjithnatakala Месяц назад +2

    1st comment😁

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks ❤️

  • @sventheviking4635
    @sventheviking4635 Месяц назад

    Over-complicated. As soon as you establish your new parallelogram divides the base into 9 and 4, you have immediately established you are dealing with 2 equilateral triangles: 60˚ between 2 sides of equal length.Therefore CD is EC + 4 = 7