Can you find area of the largest semicircle? | (Semicircles) |

Поделиться
HTML-код
  • Опубликовано: 16 янв 2025

Комментарии • 48

  • @jamestalbott4499
    @jamestalbott4499 4 месяца назад +2

    Thank you!

    • @PreMath
      @PreMath  4 месяца назад

      You're welcome!
      Thanks for the feedback ❤️

  • @allanflippin2453
    @allanflippin2453 4 месяца назад +2

    Around 7:20 where you find the length of FB = 4+8+6 = 18, I found a simpler way to calculate R. Consider right triangle OFE. OF = 18-R, EF = 6 and EO = R. R can be found using Pythagorean theorem. (18-R)^2 + 6^2 = R^2. Multiplying out, 324 - 36R + R^2 + 36 = R^2. Eliminating R^2, and combining numbers we get 36R = 360 or R = 10.

  • @danmike2305
    @danmike2305 4 месяца назад

    You're definitely a knowledgeable person. Thanks 😊

  • @alexnikola7520
    @alexnikola7520 4 месяца назад

    super

  • @SUPERTUTORALGEBRA
    @SUPERTUTORALGEBRA 4 месяца назад

    Want to learn math like this video?
    Watch our channel where we upload a variety of content relating to algebra, calculus, sat, and much more!

  • @KenW-kb4uk
    @KenW-kb4uk 4 месяца назад +1

    Could also extend big semi-circle to full circle and use intersecting chords to deduce AF length: 6 x 6 = (6+8+4) x AF => AF = 2

  • @리사두
    @리사두 4 месяца назад +1

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks ❤️🙏

  • @gabrielmizrachi9826
    @gabrielmizrachi9826 4 месяца назад

    Thank you

  • @unknownidentity2846
    @unknownidentity2846 4 месяца назад +2

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Let's use the labels R, R(g) and R(y) for the radii of the big semicircle, the green semicircle and the yellow semicircle, respectively. From the known areas of the green and the yellow semicircle we obtain:
    A(g) = πR²(g)/2
    (18π)cm² = πR²(g)/2
    36cm² = R²(g)
    ⇒ R(g) = √(36cm²) = 6cm
    A(y) = πR²(y)/2
    (8π)cm² = πR²(y)/2
    16cm² = R²(y)
    ⇒ R(y) = √(16cm²) = 4cm
    The yellow and the green semicircle have exactly one point of intersection. Therefore the distance PQ of their centers is equal to the sum of their radii:
    PQ = PD + QD = R(y) + R(g) = 4cm + 6cm = 10cm
    Since AB is a tangent to the green semicircle, the triangle PQC is a right triangle and we can apply the Pythagorean theorem:
    PQ² = QC² + PC²
    PQ² − QC² = PC²
    PQ² − R²(g) = PC²
    (10cm)² − (6cm)² = PC²
    100cm² − 36cm² = PC²
    64cm² = PC²
    ⇒ PC = √(64cm²) = 8cm
    Now let's add point F on AB such that CFEQ is a square. Then we obtain:
    BF = PB + PC + CF = R(y) + PC + R(g) = 4cm + 8cm + 6cm = 18cm
    According to the theorem of Thales the triangle ABE is a right triangle, so we can apply the right triangle altitude theorem:
    AF*BF = EF²
    (AB − BF)*BF = EF²
    (2*R − BF)*BF = R²(g)
    (2*R − 18cm)*(18cm) = (6cm)²
    (36cm)*R − 324cm² = 36cm²
    (36cm)*R = 360cm²
    ⇒ R = (360cm²)/(36cm) = 10cm
    Now we are able to calculate the area of the big semicircle:
    A = πR²/2 = π*(10cm)²/2 = (50π)cm²

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!👍
      Thanks for sharing ❤️

  • @prossvay8744
    @prossvay8744 4 месяца назад +4

    Green semicircle area=18cm^2
    1/2(π)r1^2=18π
    r1=6cm
    Yellow semicircle area=8cm^2
    1/2(π)r2^2=8
    So r2=4cm
    Connect P to Q and C to Q
    In CPQ
    CQ^2+CP^2=PQ^2
    6^2+CP^2=10^2
    So CP=8cm
    CB=CP+BP=8+4=12cm
    CF=OE=6cm
    FB=12+6=18cm
    AF=2R-18
    Connect O to F and E to F
    AF=2R-18 OF=R-(2R-18)=18-R
    In∆ OEF
    EF^2+OF^2=OE^2
    6^2+(18-R)^2=R^2
    So R=10cm
    BIg sermicle area=1/2(π)(10^2)=50π cm^2=157.08 cm^2.❤❤❤

    • @sergioaiex3966
      @sergioaiex3966 4 месяца назад

      Good job, congrats !

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @sebastianki-t2m
    @sebastianki-t2m 16 дней назад

    This figure is easy to calculate. Put the green semicircle's centre right onto the big semicircle's centre. I will reach to point P.
    So the radius of the green and yellow one are equal to the radius of the big one.
    Now you can add the square roots of the green and yellow area and square this sum.
    Or you factor out 2*pi, do the same, and multiply with 2*pi in the end. This will be 50*pi, too.
    {18*pi/(2*pi) = 9, 8*pi/(2*pi) = 4,
    9^0.5 = 3, 4^0.5 = 2,
    3 + 2 = 5,
    5² * 2*pi = 25 *2 *pi = 50*pi}
    You can factor out any value, if it's pi/2, you will find the radius (6 + 4 = 10) and receive always the same result.

  • @michaeldoerr5810
    @michaeldoerr5810 4 месяца назад

    The radius of the larger circle is 10 units. Also at the 9:25, I think that I have noticed a fact regarding AA similarity and right angles: apart from aides different sides being similar, there also has to be a comparison between different triangles that are are formed. The first triangle is formed by beta-alpha and the second triangle is formed by alpha beta. I am also wondering the way that I actually did that is just good as yours. I set the original sides as AF/EF=FE/FB. I am hoping that my construction is too far off.

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for the feedback ❤️

  • @s900991
    @s900991 3 месяца назад

    R = 5+4 = 9
    4= r of the yellow, 5 = po

  • @philipkudrna5643
    @philipkudrna5643 4 месяца назад

    I managed to get to the point where the last piece was missing (by only calculating in my head), but got stuck then, as I failed to see that you can solve it by proportion via constructing a „Thales triangle“. Once you realize that, you can also calculate the pretty solution in your head (18/6=6/2!). The radius of the large semi circle is 10 and thus the area is 50pi.

  • @marcgriselhubert3915
    @marcgriselhubert3915 4 месяца назад +1

    The radius of the green semi circle is 6 and the radius of the yellow semi circle is 4.
    We use an orthonormal center P and first axis (PB). We have B(4; 0) and E(-14; 6) on the big semi circle whose equation is (x -a)^2 + y^2 = R^2
    or x^2 +y^2 - 2.a.x + a^2 - R^2 = 0 (with a the abscissa of its center O and R its radius).
    B is on it, so: 16 - 8.a + a^2 - R^2 = 0, E is on it, so: 196 + 36 + 28.a +a^2 - R^2 = 0. We substract and obtain: 36.a + 216 = 0, and so a = -6.
    We can now have a^2 - R^2 and then R, but simpler: abs(a) = 6 = OP, and then R = 6 + 4 = 10.
    Finally the area of the big semi circle is then (1/2).Pi.(10^2) = 50.Pi.

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @santiagoarosam430
    @santiagoarosam430 4 месяца назад +1

    Los radios verde y amarillo son 6 y 4---> CP²=(6+4)²-6²=64---> CP=8. --->. Potencia de F =6²=(6+8+4)*AF---> AF=2---> AO=(2+6+8+4)/2=10---> Área semicírculo grande =10²π/2=50π.
    Gracias y saludos.

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @himadrikhanra7463
    @himadrikhanra7463 4 месяца назад

    R1= 6 , R2 =4
    Length of transverse common tangent is radius = R ( out)
    Area = pi R ^2 /2

  • @LucasBritoBJJ
    @LucasBritoBJJ 4 месяца назад +2

    I solved almost the same way…. Just got h²=mn
    h=6
    m=18
    n=x
    And it is easy to find x = 2

    • @PreMath
      @PreMath  4 месяца назад

      Thanks for sharing ❤️

  • @phungpham1725
    @phungpham1725 4 месяца назад +1

    My first attempt is almost the same as yours😅
    So it is more fun to suggest another solution.
    1/ Extend EQ to build the diameter EE’ and BP to build the diameter BB’.
    We have: EE’=12 and BB’=8
    2/ Focus on the tangent point D:
    We have: the three points P,D,andQ are collinear( tangent theorem)
    EE’//BB’-> angle E’QD=angle B’PD
    Because the two angles mentioned above are the exterior angles of the two isiosceles triangles EQD and BPD
    So, angle QDE=angle BDP
    -> E,D,and B are collinear
    --> similarly E’D and B’ are collinear
    -> E’B’//=AE ( both are perpendicular to EB)
    -> AB’=12 and AB=20
    Radius of the big semicircle=10
    Area=1/2 pix100= 50 pi sq units😊😅😅

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @aljawad
    @aljawad 4 месяца назад

    I connected OD, then used a variety of triangles similarities coupled with trigonometry to reach the same result.

    • @PreMath
      @PreMath  4 месяца назад +1

      Thanks for the feedback ❤️

  • @sergioaiex3966
    @sergioaiex3966 4 месяца назад +1

    Solution:
    A = π a²
    18π = π a²/2
    π a² = 36π
    a² = 36
    a = 6
    A = π b²
    8π = π b²/2
    π b² = 16π
    b² = 16
    b = 4
    Triangle CPQ
    CQ = 6
    PQ = 4 + 6 = 10
    CP = 8 (Pythagorean Triple)
    Then, CB = 12
    CF = 6
    EF = h = 6
    AF = m = ?
    FB = n = 6 + 12 = 18
    h² = m . n
    6² = m . 18
    36 = m . 18
    m = 2
    Diameter = 2 + 18
    Diameter = 20
    Radius = 10
    A = π r²
    A = π 10²/2
    A = 50π Square Units

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @wackojacko3962
    @wackojacko3962 4 месяца назад +1

    Anytime I call on paranormal entities too help with solving math problems, ...nothin! Thales couldn't figure it out either. So he didn't rely on the paranormal too define his existence...All Hail Thales! 🙂

    • @PreMath
      @PreMath  4 месяца назад +1

      Well said!
      Thanks for the feedback ❤️

  • @quigonkenny
    @quigonkenny 4 месяца назад +1

    Let Rɢ be the radius of green semicircle Q, Rʏ the radius of yellow semicircle P, and R the radius of big semicircle O.
    Green semicircle Q:
    Aɢ = πRɢ²/2
    18π = πRɢ²/2
    Rɢ² = 18(2) = 36
    Rɢ = √36 = 6
    Yellow semicircle P:
    Aʏ = πRʏ²/2
    8π = πRʏ²/2
    Rʏ² = 8(2) = 16
    Rʏ = √16 = 4
    As the centers of two circles are collinear with their point of tangency, D is on PQ. As PD = Rʏ = 4 and QD = Rɢ = 6, PQ = 6+4 = 10.
    Triangle ∆QCP:
    QC² + PC² = PQ²
    6² + PC² = 10²
    PC² = 100 - 36 = 64
    PC = √64 = 8
    Drop a perpendicular from E to AB at M. As EQ is parallel to AB and QC is perpendicular to AB as C is the tangent point between AB and semicircle Q, EM = QC = 6 and CM = QE = 6.
    MB = CM + PC + PB = 6 + 8 + 4 = 18
    Triangle ∆EMO:
    EM² + OM² = OE²
    6² + (18-R)² = R²
    36 + 324 - 36R + R² = R²
    36R = 360
    R = 10
    Big semicircle O:
    Aꜱ = πR²/2 = π10²/2 = 100π/2
    Aꜱ = 50π sq units ≈ 157.08 sq units

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 4 месяца назад +1

    The Answer is that Big Semicircle Area is equal to 50Pi Square Cm.
    01) Big Diameter Diameter (D) : D = 4 + 4 + 6 + 6 = 8 + 12 ; D = 20
    02) Moving the Green Circle to left until Line AE is orthogonal to AB reduces 2 cm, that is the projected intersection of Green and Yellow Circle, in Line AB.
    03) CP = 8. CP^2 = 10^2 - 6^2 ; CP^2 = 100 - 36 ; CP^2 = 64 ; CP = 8.
    04) Moving Point C, 2 cm to the Left there will be no Diagonal Tangent. Now the two Circles are Tangent in a Vertical Line.
    05) So : The Big Circle Diameter must be equal to the Sum of the Green Diameter and the Yellow Diameter. D = 12 + 8 = 20 cm
    06) So : The Big Circle Radius = 10 cm
    07) Semicircle Area = 100*Pi / 2 = 50Pi sq cm
    ANSWER:
    Big Semicircle area equal 50Pi Square Centimeters.

    • @PreMath
      @PreMath  4 месяца назад +1

      Excellent!
      Thanks for sharing ❤️

  • @Birol731
    @Birol731 4 месяца назад +1

    Second way of solution ▶
    radius of the largest semicircle: R
    radius of the small semi circle: r₁
    radius of the middle semicircle: r₂
    By making an accurate drawing, I found out that the line [PQ] is parallel to [EO] (also equal: = R) ❗
    [PQ] // [EO]
    A₁= π*r₁²/2
    A₁= 8π cm²

    8π= πr₁²/2
    16= r₁²
    r₁= 4 cm
    A₂= π*r₂²/2
    A₂= 18π cm²

    18π= πr₂²/2
    36= r₂²
    r₂= 6 cm
    Let's consider the right triangle ΔCPQ
    [QC]= r₂= 6 cm
    [PQ]= r₁ + r₂
    [PQ]= 4+6
    [PQ]= 10 cm
    By applying the Pythagorean theorem:
    [QC]²+[CP]²= [PQ]²
    6²+[CP]²= 10²

    [CP]= 8 cm
    If we move the [QP] to the left side of r₂ cm , we get the line [EO]

    [PO] would be equall to [QE]
    [PO]= [QE]
    [PO]= 6 cm❗

    [CO]= 8-6
    [CO]= 2 cm
    Let's consider the right triangle ΔOSE
    S is a point on the radius r₂ so that [ES] ⊥ [SO]
    By applying the Pythagorean theorem we get:
    [OS]²+[SE]²= [EO]²
    [OS]= 6 cm
    [SE]= [EQ]+[QS]
    [QS]= [CO]
    [QS]= 2 cm
    [SE]= 6+2
    [SE]= 8 cm

    6²+8²= R²
    R= 10 cm
    Alarge-semicircle= π*10²/2
    Alarge-semicircle= 50π
    Alarge-semicircle≈ 157,08 cm²

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @fakeplaystore7991
    @fakeplaystore7991 4 месяца назад

    A = 36π + some change. NEXT!

  • @rey-dq3nx
    @rey-dq3nx 4 месяца назад

    QC=6
    QP=10
    so CP=8
    Let CO=x
    Draw a tangent line from O to D
    then DO=CO=x
    From triangle ODP
    x²+4² =(8-x)²
    x²+16=64-16x+x²
    16x=48
    x=3
    OP=CP-CO
    OP=8-3=5
    Therefore
    OB=OP+BP
    OB=5+4=9
    OB=9=radius of big semi circle
    where did I go wrong, professor or anyone ?

  • @Birol731
    @Birol731 4 месяца назад +1

    My way of solution ▶
    1) first way:
    radius of the largest semicircle: R
    radius of the small semi circle: r₁
    radius of the middle semicircle: r₂
    A₁= π*r₁²/2
    A₁= 8π cm²

    8π= πr₁²/2
    16= r₁²
    r₁= 4 cm
    A₂= π*r₂²/2
    A₂= 18π cm²

    18π= πr₂²/2
    36= r₂²
    r₂= 6 cm
    Let's consider the right triangle ΔCPQ
    [QC]= r₂= 6 cm
    [PQ]= r₁ + r₂
    [PQ]= 4+6
    [PQ]= 10 cm
    By applying the Pythagorean theorem:
    [QC]²+[CP]²= [PQ]²
    6²+[CP]²= 10²

    [CP]= 8 cm
    Let's say:
    [CO]= x
    [OP]= 8-x

    [OP]+[PB]= R
    8-x+r₁ = R
    8-x+4= R
    12-x= R..........Equation-1
    Let's consider the right triangle ΔOSE
    S is a point on the radius r₂ so that [ES] ⊥ [SO]
    By applying the Pythagorean theorem we get:
    [OS]²+[SE]²= [EO]²
    [OS]= r₂ = 6 cm
    [SE]= x+r₂ = 6+x
    [EO]= R

    R²= 6²+(6+x)²
    R²= 36+36+12x+x²
    R²= 72+12x+x²
    R= 12-x........Eqaution-1

    (12-x)²= 72+12x+x²
    144-24x+x²= 72+12x+x²
    72= 36x
    x= 2 cm

    [CO]= 2 cm
    R= 12-x
    R= 10 cm
    Alarge-semicircle= πR²/2
    R= 10 cm

    Alarge-semicircle= π*10²/2
    Alarge-semicircle= 50π
    Alarge-semicircle≈ 157,08 cm²

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @Nothingx303
    @Nothingx303 4 месяца назад

    Είναι μια γεύση μπισκότου σοκολάτας 😋 😜

  • @sergeyvinns931
    @sergeyvinns931 4 месяца назад

    50pi.