Can you find area of the Pink shaded region? | (Rectangle) |

Поделиться
HTML-код
  • Опубликовано: 28 дек 2024

Комментарии • 37

  • @jamestalbott4499
    @jamestalbott4499 4 месяца назад +2

    Thank you!

    • @PreMath
      @PreMath  4 месяца назад

      You bet!😀
      Thanks a lot❤️

  • @murdock5537
    @murdock5537 4 месяца назад +2

    Nice! r^2 = (r - 7)^2 + (r - 14)^2 → r = 35 → pink shaded area = (49/4)(25π - 48)
    btw: ∆ 𝑂𝐵𝐶 = 𝑝𝑦𝑡ℎ. 𝑡𝑟𝑖𝑝𝑙𝑒 = 7(3 − 4 − 5); 𝑂𝐵𝐶 = 𝛿 → sin(𝛿) = 4/5

    • @PreMath
      @PreMath  4 месяца назад +1

      Excellent!
      Thanks for sharing ❤️

  • @nitishjha8259
    @nitishjha8259 4 месяца назад

    Make some videos on AP GP series, challenging problems

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 4 месяца назад

    That’s very nice and wonderful method for solve
    Thanks Sir
    Your explain is very good
    With my respects
    ❤❤❤❤

  • @anujdubeyjee
    @anujdubeyjee 4 месяца назад +1

    LOVE FROM INDIA💌

  • @prossvay8744
    @prossvay8744 4 месяца назад +3

    Let R is a Radius of sector quarter
    Connect O to B
    In ∆ OBC
    OB^2=OC^2+BC^2
    R^2=(R-14)^2+(R-7)^2
    R=35; R=7 rejected
    So Pink area=1/4(π)(35^2)-(21)(28)=49(25π/4-12)=374.11 square units.

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 4 месяца назад +3

    r^2=(r-14)^2+(r-7)^2...r^2-42r+245=0..r=21+14=35...r=21-14=7(no)...Apurple=π1225/4-(35-14)(35-7)=π1225/4-588=374,11

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @Tmwyl
    @Tmwyl 4 месяца назад

    I got this one!

  • @himo3485
    @himo3485 4 месяца назад +1

    OB=r (r-7)²+(r-14)²=r² r²-14r+49+r²-28r+196=r²
    r²-42r+245=0 (r-7)(r-35)=0 r>14 , r=35
    AB=OC=35-14=21 AO=BC=35-7=28
    Pink area = 35*35*π*1/4 - 21*28 = 1225π/4 - 588

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @devondevon4366
    @devondevon4366 4 месяца назад

    306.25p -588 or 374.12

  • @kennethstevenson976
    @kennethstevenson976 4 месяца назад

    Got it!

  • @wackojacko3962
    @wackojacko3962 4 месяца назад +2

    Guess I'm gonna learn how to play the banjo. What I'm told it's like learning math. The only way to learn math is too do math. This problem is insightful exposing a little joy on applying Theorems like Pythagorean or Algebra...🙂

    • @PreMath
      @PreMath  4 месяца назад +1

      Wow😀
      Thanks for the feedback ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 4 месяца назад +1

    S=(1225π-2352)/4≈374,5

    • @PreMath
      @PreMath  4 месяца назад +1

      Excellent!
      Thanks for sharing ❤️

  • @TurquoizeGoldscraper
    @TurquoizeGoldscraper 4 месяца назад

    I've seen this pattern enough to instantly recognize the 3-4-5 Pythagorean triangle.

  • @MrPaulc222
    @MrPaulc222 4 месяца назад

    (r-14)^2 + (r-7)^2 = r^2
    r^2 - 28r + 196 + r^2 - 14r + 49 = r^2
    2r^2 - 42r + 245 = r^2
    r^2 - 42r + 245 = 0
    (42+or-sqrt(1764 - 4*1*245))/2 = r
    (42+or-sqrt(784))/2
    42+or-2*sqrt(196))/2 = r
    (42+or-28)/2 = r
    Retain the + result for r=35
    Rectangle is 28*21 = 588
    Full quadrant area would be 35^2 * pi= 962.115
    962 - 588 = 374 + 0.115
    374.115 un^2

  • @marcgriselhubert3915
    @marcgriselhubert3915 4 месяца назад +1

    In triangle OCB: R^2 = (R - 14)^2 + (R - 7)^2, with R the radius of the quater circle.
    Then R^2 - 42.R + 245 = 0. Deltaprime = 21^2 - 245 = 196
    R = 21 + 14 = 35 or R = 21 - 14 = 7 (rejected)
    So the area of the rectangle OABC is 21.28 = 588
    The area of the quater circle is (Pi/4).(35^2) = (1225/4).Pi
    Finally the pink area is (1225/4).Pi - 588.
    (Very easy)

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @kalavenkataraman4445
    @kalavenkataraman4445 4 месяца назад

    374.5 .Sq.units

  • @vitalistiknius5636
    @vitalistiknius5636 4 месяца назад +1

    Better solve a system of equations for OA and OC. Then you come to a quadratic equation x^2-28x=0 which solves itself at once.

  • @quigonkenny
    @quigonkenny 4 месяца назад +1

    As OABC is a rectangle, OC = BA, OA = CB, and ∠AOC = ∠OCB = ∠CBA = ∠BAO = 90°. Let r be the radius of quarter circle O. Draw radius OB.
    Triangle ∆OCB:
    OC² + CB² = OB²
    (r-14)² + (r-7)² = r²
    r² - 28r + 196 + r² - 14r + 49 = r²
    r² - 42r + 245 = 0
    (r-35)(r-7) = 0
    r = 35 | r = 7 ❌ --- r > 14
    The pink area is equal to the area of quarter circle O minus the area of rectangle OABC.
    Pink area:
    Aᴘ = πr²/4 - hw
    Aᴘ = π(35)²/4 - (35-7)(35-14)
    Aᴘ = 1225π/4 - 28(21)
    Aᴘ = 1225π/4 - 588 ≈ 374.11 sq units

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @devondevon4366
    @devondevon4366 4 месяца назад

    306.25 pi - 588 or 374.12
    Draw a diagonal inside the rectangle. This the radius
    Let the radius = r, then
    r^2 = (r - 14)^2 + (r -7)^2
    ...........................
    .........................
    0 = r^2 -42r + 245
    0 = (r-35)(r-7)
    r = 35
    Hence, the radius of the quarter circle = 35,
    and its area = 35^2 pi *1/4 = 306.25 pi
    Let's find the length and width of the rectangle.
    35 - 7 = 28
    35-14 = 21
    Hence, its area = 588
    Hence, area of purple region = 306.25pi - 588 or 374.12

  • @kalavenkataraman4445
    @kalavenkataraman4445 4 месяца назад

    374.5 Sq.nuits

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @Birol731
    @Birol731 4 месяца назад

    My way of solution ▶
    the radius of this quarter circle is r
    [OC]=[BA]= r-14
    [OA]= [CB]= r-7
    [OB]= r
    according to the Pythagorean theorem for the right triangle ΔOCB :
    [OB]²= [OC]²+[CB]²
    r²= (r-14)²+(r-7)²
    r²= r²-28r+196 + r²-14r+49
    r²-42r+245 = 0
    Δ= 42²-4*1*245
    Δ= 784
    √Δ= √2²*14²
    √Δ= 28
    r₁= (42+28)/2
    r₁= 35
    r₂= (42-28)/2
    r₂= 7
    if r= 7, r-14 < 0 ❌

    r= 35 length units
    a= r-14
    a= 35-14
    a= 21
    b= 35-7
    b= 28
    Arectangle= a*b
    Arectangle= 21*28
    Arectangle= 588 square units
    Apink= πr²/4 - Arectangle
    Apink= π*35²/4 - 588
    Apink= (1225 π - 2352)/4
    Apink ≈ 374,11 square units

  • @sergioaiex3966
    @sergioaiex3966 4 месяца назад

    Solution:
    a + 14 = b + 7 = r
    b - a = 7
    a² + b² = r²
    a² + b² = (b + 7)²
    a² + b² = b² + 14b + 49
    a² - 14 (a + 7) - 49 = 0
    a² - 14a - 98 - 49 = 0
    a² - 14a - 147 = 0
    a = 14 ± 28/2
    a = 21 Accepted
    a = -7 Rejected
    a = 21
    b = 28
    r = 35
    A = π (35)²/4 - (21.28)
    A = 1225π/4 - 588
    A = 306,25π - 588
    Square Units
    Or
    A ~= 374,1 Square Units

  • @unknownidentity2846
    @unknownidentity2846 4 месяца назад +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    The triangle OAB is a right triangle, so we can apply the Pythagorean theorem. With r being the radius of the quarter circle we obtain:
    OB² = OA² + AB² = OA² + OC²
    r² = (r − 7)² + (r − 14)²
    r² = r² − 14*r + 49 + r² − 28*r + 196
    0 = r² − 42*r + 245
    r = 21 ± √(21² − 245) = 21 ± √(441 − 245) = 21 ± √196 = 21 ± 14
    According to r−14>0 ⇒ r>14 the only useful solution is r=21+14=35. Now we are able to calculate the area of the pink region:
    A(pink)
    = A(quarter circle) − A(rectangle)
    = πr²/4 − OA*OC
    = πr²/4 − (r − 7)*(r − 14)
    = π*35²/4 − (35 − 7)*(35 − 14)
    = (1225/4)π − 28*21
    = (1225/4)π − 588
    ≈ 374.11

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 4 месяца назад +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) OB = Radius = R lin un
    02) OA = (R - 7) li un
    03) OC = (R - 14) li un
    04) (R - 7)^2 + (R - 14)^2 = R^2
    05) R^2 - 14R + 49 + R^2 - 28R + 196 = R^2
    06) 2R^2 - 42R + 245 = 0
    07) Quadratic Equation with Two Positive Integer Solutions : R = 7 and R = 35
    08) R = 35, because R > 14
    09) Quarter of Circle Area = 35^2 * Pi / 4 ; QCA = 1.225Pi / 4 ; QCA = 306,25Pi sq un QCA ~ 962 sq un
    10) Rectangle [ABCO] Area = (35 - 7) * (35 - 14) = 28 * 21 = 588 sq un
    11) Pink Area = 962 - 588 ; Pink Area = 374 sq un
    Therefore,
    OUR ANSWER :
    Pink Area approx. equal to 374 Square Units.

    • @PreMath
      @PreMath  4 месяца назад

      Excellent!
      Thanks for sharing ❤️