Can you find Area and Perimeter of the triangle? | (Angles) |

Поделиться
HTML-код
  • Опубликовано: 21 янв 2025

Комментарии • 50

  • @mohanramachandran4550
    @mohanramachandran4550 Месяц назад +2

    𝗩𝗲𝗿𝘆 𝗶𝗻𝘁𝗲𝗿𝗲𝘀𝘁𝗶𝗻𝗴 𝘀𝘂𝗺

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l Месяц назад +1

    waooo very helpful vedio thanks for sharing ❤❤❤

  • @abeonthehill166
    @abeonthehill166 Месяц назад

    Thanks for sharing Professor .

  • @marcgriselhubert3915
    @marcgriselhubert3915 Месяц назад +2

    In ABC we have 6.x = 180°, so x = 30°. Now AB/sin(30°) = BC/sin(60°) = AC/sin(90°) = 32, so AB = 16 and BC = 16.sqrt(3) and the perimeter is
    16..(3 + sqrt(3)). The area is (1/2).AB.BC as the triangle is a right triangle, so the area is (1/2).(16).(16.sqrt(3) = 128.sqrt(3)). (No difficulty.)

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @knowledgeside8708
    @knowledgeside8708 24 дня назад

    Ohh god! Was it so easy!? I used trigonometry and then got the right answer.. This way is much easier! Thank you sir!

  • @unknownidentity2846
    @unknownidentity2846 Месяц назад +4

    Let's face this challenge:
    .
    ..
    ...
    ....
    .....
    From the interior angle sum of the triangle ABC we can conclude:
    180° = ∠BAC + ∠ABC + ∠ACB = 2x + 3x + x = 6x ⇒ x = 180°/6 = 30°
    ⇒ ∠BAC = 2x = 60°
    ∧ ∠ABC = 3x = 90°
    ∧ ∠ACB = x = 30°
    Therefore ABC is a 30°-60°-90° triangle and we obtain:
    AB = AC/2 = 32/2 = 16
    BC = AB*√3 = 16√3
    Now we are able to calculate the area A and the perimeter P of the triangle:
    A = (1/2)*AB*BC = (1/2)*16*16√3 = 128√3
    P = AB + AC + BC = 16 + 16√3 + 32 = 48 + 16√3
    Best regards from Germany

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @globlecenter9235
    @globlecenter9235 Месяц назад +1

    Area 245.76
    Perimeter 76.8

  • @cheechierocks
    @cheechierocks Месяц назад +4

    For those complaining about graphics. Graphics are and should never be drawn to scale. Trust your math and not your eyes.

    • @ronaldkussman2539
      @ronaldkussman2539 Месяц назад +1

      True dat. But this was egregiously misleading.

  • @MrPoornakumar
    @MrPoornakumar Месяц назад

    Total angle (sum of angles) in a triangle =180 degrees.
    P = Perimeter = AB+BH+AH.
    Here, it is x+2x+3x = 6x.
    Hence x = (180/6) degrees = 30 degrees.
    Name the vertices at angles x as A, that at 2x as B & that at 3x as H (sides designated AB, BH & AH).
    The angles are x = 30 degrees, 2x = 60 degrees, 3x = 90 degrees and the "side 32" lies between x & 2x facing 3x = 90 degrees.
    Its a right-angled triangle.
    And hypotenuse = AB = 32.
    Construction: The triangle is flipped over at H (angle 3x = 90 deg.), around A (angle x) & joined to the original triangle. Call the flipped vertex as C. Then in the composite triangle, at vertex A, the angles get added to 90+90 degrees = 2(3x) = 180 degrees.
    Hence the continuation is a straight line BH+HC = 2 BH
    The new triangle is an equilateral triangle with angles each 2x = 60 degrees. Hence it has equal sides
    AC = 2BH = AB = 32.
    BH = 32/2 = 16 = CH.
    In the Pythagoras (right-angled) triangle ABH,
    hypotenuse^2 = altitude^2+base^2
    hypotenuse^2 - altitude^2 = base^2; AH is the base
    AH^2 = AB^2 - BH^2 = 32^2 - (32/2)^2 = (16 x 2)^ - 16^2 = 16^2(2^2 - 1) = 16^2(3)
    AH = √[(16^2)3] = 16√3.
    P = AB+BH+AH = 32+16+16√3 = 16(3+√3).
    Area of (the first) triangle, ABH = ½[altitude x base] = ½[BH x AH] = ½[16 x 16√3] = ½.16^2[√3] = 128√3

  • @alster724
    @alster724 Месяц назад +1

    Easy.
    After figuring out it was a 30-60-90 rt∆, I solved this myself and skipped to the end to double check if my answers match and they did.

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for the feedback ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 Месяц назад +2

    S=128√3≈221,696≈221,7
    P=48+16√3=16(3+√3)≈75,712≈75,71

    • @PreMath
      @PreMath  Месяц назад +1

      Excellent!
      Thanks for sharing ❤️

  • @gaylespencer6188
    @gaylespencer6188 Месяц назад +1

    Peculiarly drawn 90' triangle.

    • @PreMath
      @PreMath  Месяц назад

      Thanks for the feedback ❤️

  • @pas6295
    @pas6295 Месяц назад

    It is very simple. First name the corner where you have the angle 2x as point A. Then the point in which you have the angle x as B. And the third one which has 3x as Point C. From A draw a perpendicular to meet BC at a point extended byCB as D. Let us assume AC as P. And BC as Q. In the triangle ABC the sides are proportional to their opposite angle. So AB which is in length 32/3x=P/x=Q/2x.
    The sum of three angles is 6 •x=180.So the angle 3•x=90 being a Rt Angle. Now two Rt.angled triangles are there only two unknown involving P one side and another Q. So you can solve easily for Pand Q. Once you know Pand Q and the other side given as 32 you get perimeter and half of it semi perimeter. Use the Area of a triangle using the three sides formula. √s(s-a) ( s-b)(s-c) /2. You get the area and Perimeter.

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq Месяц назад +1

    Extend CB to D and angle ABD =2x +x =3x
    Now we see AB is on CBD and two adjacent angles ABD and ABC are 3x
    Hence AB is perpendicular to BC.
    Hence angle ABC=3x =90 degrees
    Now angle ACB =x =3x/3=90/3=30 degrees
    Angle BAC =2x =30*2=60 degrees .
    ABC is a 30-60-90 triangle
    Side opposite to 90 is 32
    Hence side opposite to 30 is 32/2=16
    side opposite to 60 is 16√3
    Area =1/2*16*16√3
    =128√3 sq units
    Perimeter =32+16+16√3
    =48+16√3=16(3+√3) units

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @alexundre8745
    @alexundre8745 Месяц назад +1

    Bom dia Mestre
    Obrigado pela aula

    • @PreMath
      @PreMath  Месяц назад

      Hello dear😀
      You are very welcome!
      Thanks for the feedback ❤️

  • @gnanadesikansenthilnathan6750
    @gnanadesikansenthilnathan6750 Месяц назад

    Got it using trigonometric principles.

  • @jamestalbott4499
    @jamestalbott4499 Месяц назад +1

    Thank you!

    • @PreMath
      @PreMath  Месяц назад

      You are very welcome!
      Thanks ❤️

  • @MrPaulc222
    @MrPaulc222 Месяц назад +1

    x = 30deg so it's a 30,60,90 drawn totally out of scale (well, you did warn us!).
    32 is the hypotenuse as it's opposite the 90deg.
    Therefore, the two shorter sides are 16 and 16*sqrt(3)
    Perimeter is 48 + 16*sqrt(3) which approximate to 75.71
    Area is 8*16*sqrt(3) = 128*sqrt(3) which approximates to 221.7 un^2.
    The key to this is figuring out the angles first: i.e. 6x = 180deg

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for the feedback ❤️

  • @cyruschang1904
    @cyruschang1904 Месяц назад

    x + 2x + 3x = 180°
    It is a 30° - 60° - 90° triangle
    The three sides are 16 - 16√3 - 32
    Perimeter = 48 + 16√3

  • @wackojacko3962
    @wackojacko3962 Месяц назад +1

    1969 I was 20 klicks up the Mekong and had to secure the perimeter . So similarly as @ 2:16 , I was stared at like whoose in charge here? 😊

    • @PreMath
      @PreMath  Месяц назад +1

      😀
      Thanks for the feedback ❤️

  • @sergioaiex3966
    @sergioaiex3966 Месяц назад

    Solution:
    The sum of the interior angles of a triangle is always 180°, therefore:
    x + 2x + 3x = 180°
    6x = 180°
    x = 30°
    Thus, we are dealing with a special triangle 30° - 60° - 90°
    The segment opposite 90° is 32 and it is "2x"
    The segment opposite 30° is "x"
    And the segment opposite 60° is "x√3"
    Therefore 2x = 32
    x = 16
    The sides of the triangle ABC is 32, 16 and 16√3
    Perimeter = 32 + 16 + 16√3
    Perimeter = 48 + 16√3 Units ✅
    Perimeter ≈ 75.7128 Units ✅
    Area = ½ base height
    Area = ½ 16√3 . 16
    Area = 128√3 Square Units ✅
    Area ≈ 221.7025 Square Units ✅

  • @gelbkehlchen
    @gelbkehlchen Месяц назад

    Solution:
    x+2x+3x = 6x = 180° |/6 ⟹
    x = 30° ⟹ the triangle is the famous 30°-60°-90° triangle. This means that AB = 32/2 = 16 and BC = √(32²-16²) = √786 = √(16*16*3) = 16*√3.
    Perimeter = 32+16+16*√3 = 16*2+16+16*√3 = 16*(3+√3) ≈ 75.7128
    Area = AB*BC/2 = 16*16*√3/2 = 128*√3 ≈ 221.7025

  • @Birol731
    @Birol731 Месяц назад +1

    My way of solution ▶
    For the given triangle ΔABC, the angles are:
    ∠CAB= 2x
    ∠ABC= 3x
    ∠BCA= x

    2x+3x+x= 180°
    x= 30°

    ∠CAB= 60°
    ∠ABC= 90°
    ∠BCA= 30°
    ΔABC is a right triangle.
    sin(30°)= [AB]/[CA]
    [CA]= 32

    1/2= [AB]/32
    [AB]= 16
    cos(30°)= [BC]/[CA]
    [CA]= 32

    √3/2= [BC]/32
    [BC]= 16√3
    P(ΔABC)= [AB]+ [BC] + [CA]
    P(ΔABC)= 16+ 16√3 + 32
    P(ΔABC)= 48+ 16√3
    P(ΔABC)= 16(3+√3)
    P(ΔABC)≈ 75,713 length units
    A(ΔABC)= [AB]*[BC]/2
    A(ΔABC)= 16*16√3/2
    A(ΔABC)= 128√3
    A(ΔABC)≈ 221,70 square units

    • @PreMath
      @PreMath  Месяц назад +1

      Excellent!
      Thanks for sharing ❤️

  • @wasimahmad-t6c
    @wasimahmad-t6c Месяц назад

    180÷6=30×2=60÷30=2×2=4+1×1=5squroth=2.236+3=5.236)(32÷2.236×5.236=74.9338

  • @승수노-z3e
    @승수노-z3e Месяц назад

    angle 180=nx?

  • @globlecenter9235
    @globlecenter9235 Месяц назад

    Area 245.76
    Perimeter. 76.8

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho Месяц назад +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) X + 2X + 3X = 180º ; 6X = 180º ; X = 30º
    02) Triangle (ABC) Angles = (30º ; 60º ; 90º)
    03) sin(30º) = AB / 32 ; AB = 32 * sin(30º) ; AB = 16
    04) sin(60º) = BC / 32 ; BC = 32 * sin(60º) ; BC = (32 * sqrt(3)) / 2 ; BC = 16sqrt(3)
    05) A = (16sqrt(3) * 16) / 2
    06) A = 128sqrt(3) ; A ~ 221,70 sq un
    07) P = 32 + 16 + 16sqrt(3) ; P = 48 + 16sqrt(3) ; P ~ 75,8 lin un
    Therefore,
    Area ~ 221,70 Square Units
    Perimeter ~ 75,8 Linear Units

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @ManojkantSamal
    @ManojkantSamal Месяц назад

    Area =128.*3(*= read as square root )
    Perimeter =16(3+*3).......May be

  • @solomou146
    @solomou146 Месяц назад

    Καλησπέρα σας. Διαφωνώ πλήρως με το παραπλανητικό σχήμα που δόθηκε. Άσχετα αν ένας μαθηματικός μπορεί εύκολα να καταλάβει τι συμβαίνει, φανταστείτε να δοθεί έτσι σε ένα διαγώνισμα. Ο μέσος μαθητής θα αμφιβάλλει για αυτό που βλέπει και θα χάσει ώρα ψάχνοντας τι πάει στραβά. Κατά τη γνώμη μου, θα μπορούσε να δοθεί η απλή αυτή άσκηση περιγραφικά, χωρίς σχήμα, ως εξής. "Δίνεται τρίγωνο ΑΒC με ΑC=32 και γωνίες: C=x, A=2x και B=3x. Να βρείτε το εμβαδόν και την περίμετρο του τριγώνου ABC".

  • @giuseppemalaguti435
    @giuseppemalaguti435 Месяц назад +1

    X=30..3x=90???

    • @alster724
      @alster724 Месяц назад +1

      Yes. That's why he redrew it as a right triangle.

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for the feedback ❤️

  • @Alishbafamilyvlogs-bm4ip
    @Alishbafamilyvlogs-bm4ip Месяц назад +1

    Very beautiful video stay connected Sir ❤❤🎉🎉🎉

  • @adoq
    @adoq Месяц назад

    took me 10 seconds

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for the feedback ❤️

  • @kouroshsalehi9486
    @kouroshsalehi9486 Месяц назад

    Sorry, but it's not a good problem at solving at all....