Can you find Perimeter and Area of the triangle? | (Trigonometry) |

Поделиться
HTML-код
  • Опубликовано: 22 дек 2024
  • Learn how to find the Perimeter and Area of the triangle. Important Geometry and Algebra skills are also explained: Law of Cosines; area of a triangle formula; perimeter. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Can you find Perimeter...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Can you find Perimeter and Area of the triangle? | (Trigonometry) | #math #maths | #geometry
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindPerimeter #FindArea #TriangleArea #LawOfCosines #GeometryMath #PythagoreanTheorem
    #MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
    #MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Two Methods to Solve System of Exponential of Equations
    Olympiad Question
    Find Area of the Shaded Triangle in a Rectangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    imo
    Competitive Exams
    Competitive Exam
    Calculate the length AB
    Pythagorean Theorem
    Right triangles
    Intersecting Chords Theorem
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

Комментарии • 35

  • @anatoliy3323
    @anatoliy3323 9 часов назад +1

    💯👍🎄 Merry Christmas 🎁 Be happy and all the best to you, Professor!

    • @PreMath
      @PreMath  9 часов назад

      Merry Christmas! Wishing you a happy holiday season as well! 😊🙏

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l 6 часов назад

    Wow Sirr ❤❤ Very Interesting Video❤❤❤ Thanks for sharing ❤❤

  • @jamestalbott4499
    @jamestalbott4499 Час назад

    Thank you!

  • @kalavenkataraman4445
    @kalavenkataraman4445 12 часов назад +2

    Perimeter = 7.5 , area =1.623 Sq.units(15× root3÷16)

  • @AmirgabYT2185
    @AmirgabYT2185 11 часов назад +1

    P=7,5
    S=15√3/16≈1,624

  • @marcgriselhubert3915
    @marcgriselhubert3915 11 часов назад +1

    *Let's name t = 3.x -4, The side lenthes of the triangle are now BA = t - 1 , BC = t and AC = t + 1.
    The law of cosines in the triangle ABC gives: (t + 1)^2 = t^2 + (t - 1)^2 -2.t.(t - 1).cos(120°), or: t^2 +2.t + 1 = t^2 + t^2 -2.t + 1 +t^2 - t (as cos(120°) = -1/2).
    That gives: 2.t^2 - 5.t = 0 and then t = 5/2 (t cannot be equal to 0 as the lengthes are positive). So t = 3.x -4 = 5/2 (and x = 13/6).
    *The perimeter of the triangle is 3.t = 15/2.
    *The area of the triangle (1/2).BA.BC.sin(120°) = (1/2).t.(t -1).(sqrt(3)/2) = (1/2).(5/2).(3/2).(sqrt(3)/2) = (15/16).sqrt(3).

    • @jimlocke9320
      @jimlocke9320 6 часов назад

      Nice observation that simplifies the algebra!

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 11 часов назад +1

    Sir
    1) we may write the side
    3x -4 =a
    Then 3x - 5=a -1
    3x -3= a +1
    2)Perimeter =3a
    3)1/2*a*(a-1)sin120
    4)
    Cos 120 =[(a-1)^2+a^2 -(a+1)^2]/[2a(a-1)]
    =(a^2-2a +1+a^2 -a^2-2a-1)/2a(a-1)
    =(a^2-4a)/2a(a-1)
    =(a -4)/(2a-2)
    > - 1/2 =(a-4)/(2a -2)
    > a=5/2 units
    5)Perimeter =3a=3*5/2=15/2 units
    6)Hence the legs of ang 120 degrees
    are a=5/2 and a-1=5/2 -1=3/2
    Area =1/2*5/2* 3/2*sin 120
    =1/2*5/2*3/2*√3/2
    =1*5*3*√3/2*2*2*2
    =15√3/16 sq units
    [ ***
    please note that this solution does not have any - ve value of length and no question of rejecting the - -ve arose. ]

    • @georgebliss964
      @georgebliss964 3 часа назад

      Yes, substituting a, (a-1) & (a+1) for the side lengths simplifies the Cosine Rule calculations and eliminates the need to solve for x.

  • @sorourhashemi3249
    @sorourhashemi3249 2 часа назад

    Thanks chalenging. Draw a right line from A and mark it ad F. We have a triangle AFB in which B angle is 60 and A angle is 30. The side is FB is half of the cord AB. = 3x-5/2 focus on right triangle AFC and by phytagorus theorum AF^2+{( 3x-5/2/2)+(3x-4)}^2=(3x-3)
    ^2)===> X=2.16

  • @soli9mana-soli4953
    @soli9mana-soli4953 6 часов назад

    I solved without trigonometry tracing the height AH and seeing that AHB is a right triangle of 30,60,90 degree whose hypotenuse is 3x-5. It leads to the same quadratic equation without the cosine law

  • @Abdelfattah-hr8tt
    @Abdelfattah-hr8tt 12 часов назад +1

    I'm so glad to be one of your fallwers

    • @PreMath
      @PreMath  8 часов назад

      Thanks dear ❤️🙏
      You are the best! ❤️
      Thanks for the feedback ❤️

  • @murdock5537
    @murdock5537 6 часов назад

    Very nice, many thanks, Sir! Merry Christmas!
    φ = 30° → cos⁡(4φ) = -cos⁡(6φ - 4φ) = -cos⁡(2φ) = -sin⁡(φ) = -1/2
    sin⁡(4φ) = sin⁡(6φ - 4φ) = sin⁡(2φ) = cos⁡(φ) = √3/2
    ∆ ABC → ABC = 4φ; AB = 3x - 5; BC = 3x - 4; AC = 3x - 3; area & perimeter ∆ ABC = ?
    3x - 3 ∶= a → 3x - 4 = a - 1 → 3x - 5 = a - 2 →
    a^2 = (a - 1)^2 + (a - 2)^2 - 2(a - 1)(a - 2)cos⁡(4φ) = (a - 1)^2 + (a - 2)^2 + (a - 1)(a - 2) →
    a^2 - 9a + 7 = 0 → a1,a2 = (1/4)(9 ± 5) → a1 = 1 → a - 2 < 0 ≠ solution →
    a2 = 7/2 = 3x - 3 → x = 13/6 → 3x - 3 = 7/2 → 3x - 4 = 5/2 → 3x - 5 = 3/2 →
    perimeter ∆ ABC = 15/2 → area ∆ ABC = (1/2)sin⁡(4φ)(a - 1)(a - 2) = 15√3/16

  • @imetroangola17
    @imetroangola17 10 часов назад

    *Solução:*
    Seja y = 3x - 5. Daí,
    BC= y + 1 e AC = y + 2. Você pode usar a lei dos cossenos, porém , vamos construir uma perpendicular AD em relação ao lado BC. Assim,
    O ângulo ABD = 60° e, usando a definição de seno e cosseno no triângulo retângulo ∆ABD, temos:
    BD = y/2 e AD=(y√3)/2. Assim, DC = y/2 + y+1 = (3y+2)/2. Por Pitágoras no ∆ACD:
    (y+2)² = [(y√3)/2]² + [(3y+2)/2]²
    y²+4y+4 = 3y²/4+(9y²+12y+4)/4
    y²+4y+4 = (12y²+12y+4)/4
    y²+4y+4 = 3y²+3y+1
    2y² - y -3 = 0, com y > 0. Resolvendo essas equação do 2° grau, obtemos y = 3/2, logo:
    AB=3/2, BC=5/2, AC=7/2 e AD=3√3/4. Temos:
    *_Perímetro=_* 3/2 + 5/2 + 7/2 = *15/2 U*
    *_Área=_* AD×BC/2 =
    = 5/2 × 3√3/8 = *15√3/16 U.Q*

  • @alexniklas8777
    @alexniklas8777 8 часов назад

    I solved the problem using your method:
    x= 13/6; Р=7,5; S= a×b×sin(60°)/2=
    =(3/2×5/2×√3/2)/2=15√3/16
    Thanks sir!❤

  • @alexundre8745
    @alexundre8745 13 часов назад

    Bom dia Mestre
    Irei usar a Lei dos cossenos e produtos notáveis p resolver essa questão
    Grato

  • @phungpham1725
    @phungpham1725 9 часов назад

    1/ Label AB= (3x-5)= a
    -> AC= (3x-5) +2=(a+2) and BC=(a+1)
    2/ Drop the height AH to BC-> AH = a sqrt3/2 and BH= a/2 ( the triangle AHB is a 30/90/60 one)
    --> HC = a/2 + a+1= (3a+2)/2
    By using the Pythagorean theorem
    sq (asqt3/2) + sq((3a+2)/2))= sq( a+2)
    --> 2sqa-a-3 = 0
    -> a= 3/2 ( negative result rejected)
    --> 3x -5 = 3/2
    x= 13/6
    Perimeter= 7.5 units
    Area= 15sqr3/ 16😅😅😅

  • @cyruschang1904
    @cyruschang1904 5 часов назад

    Perimeter = (3x - 3) + (3x - 4) + (3x - 5) = 9x - 12
    Area = (height)(base)/2 = (Sin60°)(3x - 5)(3x - 4)/2 = (√3)(3x - 5)(3x - 4)/4
    [(Sin60°)(3x - 5)]^2 + [(Cos60°)(3x - 5)]^2 = (3x - 5)^2
    To find x
    (3x - 3)^2 = (3x - 4)^2 + (3x - 5)^2 - 2(3x - 4)(3x - 5)(Cos120°)
    18x^2 - 63x + 52 = 0
    x = [63 +/- √(63)(63) - 4(18)(52)] / 36 = [21 +/-√(21)(21) - 4(2)(52)] / 12 = 13/6 or 4/3 (the base 3x - 4 cannot be zero)
    Perimeter = 9(13/6) - 12 = 39/2 - 12 = 7.5
    Area = (√3)(13/2 - 5)(13/2 - 4)/4 = (√3)(3/2)(5/2)/4 = (15√3)/16

  • @georgebliss964
    @georgebliss964 9 часов назад

    Dropping a perpendicular from point A to meet extended line CB at point D.
    Let BD = length Y.
    Then AB = 2Y, since angle DAB = 30 degrees.
    BC = 2Y + 1, AC = 2Y +2, DC = 3Y + 1.
    In triangle ABD, AD^2 = (2Y)^2 - Y^2.
    In triangle ACD, AD^2 = (2Y + 2)^2 - (3Y + 1)^2.
    Equating two values for AD^2.
    4Y^2 - Y^2 = 4Y^2 + 4 Y + 4 - 9Y^2 - 6Y -1.
    8Y^2 - 2Y - 3 = 0.
    (4Y - 3) (2Y + 1).
    Y = 3/4 = 0.75.
    Thus AB = 2Y = 1.5.
    BC = 2Y + 1 = 2.5.
    AC = 2Y + 2 = 3.5.
    So perimeter = 7.5.
    AD = AB cos 30 = 1.299.
    Area = 0.5 x 2.5 x 1.299 = 1.624.

    • @jimlocke9320
      @jimlocke9320 6 часов назад

      This is fine except that you could have used cos (30) = (√3)/2 to get the exact solution with the radical. Alternatively, since you have the lengths of all 3 sides, you could have used Heron's formula.
      Your method is great for viewers who don't know the law of cosines!

  • @giuseppemalaguti435
    @giuseppemalaguti435 8 часов назад

    Col teorema del coseno risulta 18x^2-63x+52=0..x=39/18,x=4/3(no)..per cui i lati sono 7/2,3/2,5/2...A=(1/2)(3/2)(5/2)sin120=15√3/16..P=15/2

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 7 часов назад

    Here there is another sol
    Drop a perpendicular AD on extended CB
    In 🔺 ADB is a special 🔺 of 30-60-90
    So if BD =1 , AB =2
    Hence AB =3x -5 = 2
    > x =7/3
    BC =3x -4 =3
    AC = 3x -3 =4
    Hence the sides of triangle ABC are 2,3,4
    Perimeter = 2+3+5=9 units
    Area =1/2*2*3*sin120
    =3sin 120
    =3*√3/2=3√3/2sq units
    This have so many solutions as we take different values of BD

  • @sergioaiex3966
    @sergioaiex3966 9 часов назад +2

    Solution:
    First, we've to calculate x, by using the Law of Cosines:
    (3x - 3)² = (3x - 4)² + (3x - 5)² - 2 (3x - 4) (3x - 5) cos 120°
    9x² - 18x + 9 = 9x² - 24x + 16 + 9x² - 30x + 25 + 9x² - 15x - 12x + 20
    9x² - 18x + 9 = 27x² - 81x + 61
    18x² - 63x + 52 = 0
    x = (63 ± √225)/36
    x = (63 ± 15)/36
    x' = 78/36 = 39/18 = 13/6 (Accepted)
    x" = 48/36 = 12/9 = 4/3 (Rejected)
    Therefore x = 13/6
    Now we have to calculate the sides length
    3x - 5 = 3 (13/6) - 5 = 39/6 - 5 = (39 - 30)/6 = 9/6 = 3/2
    3x - 4 = 3 (13/6) - 4 = 39/6 - 4 = (39 - 24)/6 = 15/6 = 5/2
    3x - 3 = 3 (13/6) - 3 = 39/6 - 3 = (39 - 18)/6 = 21/6 = 7/2
    Area = ½ × 3/2 × 5/2 × sin 120°
    Area = ½ × 3/2 × 5/2 × √3/2
    Area = (15√3)/16 Square Units ✅
    Area ≈ 1.6237 Square Units ✅
    Perimeter = 3/2 + 5/2 + 7/2
    Perimeter = 15/2 Units ✅
    Perimeter = 7.5 Units ✅

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq 7 часов назад

      This has so many solutions. May see and comment on the two solutions offered by me

  • @uwelinzbauer3973
    @uwelinzbauer3973 4 часа назад +1

    Thanks professor for sharing this interesting video!
    Merry Christmas to all who celebrate it.
    I hope to do not wrong to wish a happy winter solstice to everyone 😊
    To my opinion this is not political, not dependent on what kind of belief one has, including atheists, even of no significance if earth is flat or a globe.
    It can be an occasion to send best wishes to anyone, like peace, health and happiness. For those who live in the north its the expectation of light and warmth will come back.

    • @PreMath
      @PreMath  3 часа назад +1

      So kind of you dear🙏❤️
      Merry Christmas! Wishing you a happy holiday season as well! 😊🙏
      Stay blessed 😀

  • @wasimahmad-t6c
    @wasimahmad-t6c 8 часов назад

    7.5×2.95÷2=11.0625

  • @wackojacko3962
    @wackojacko3962 11 часов назад +1

    First and foremost as a US citizen I follow the Constitution of the United States of America. If anyone is offended by that, I don't care! Be offended...🤣. @ 7:43 , never say never! Things get very strange very fast in this 4-dimensional space-time continuum.😊

    • @PreMath
      @PreMath  8 часов назад +1

      😀
      Thanks for sharing ❤️

  • @blogfilmes1134
    @blogfilmes1134 11 часов назад +1

    Acertei !!!!!

    • @PreMath
      @PreMath  8 часов назад +1

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @reynaldowify
    @reynaldowify 11 часов назад

    Yhank you. I thought that x had to be intyeger.

  • @unknownidentity2846
    @unknownidentity2846 10 часов назад

    Let's face this challenge:
    .
    ..
    ...
    ....
    .....
    We should be able to find the value of x by applying the law of cosines. With y=3x−5 we obtain:
    AC² = AB² + BC² − 2*AB*BC*cos(∠ABC)
    (3x − 3)² = (3x − 5)² + (3x − 4)² − 2*(3x − 5)*(3x − 4)*cos(120°)
    (y + 2)² = y² + (y + 1)² − 2*y*(y + 1)*(−1/2)
    (y + 2)² = y² + (y + 1)² + y*(y + 1)
    y² + 4y + 4 = y² + y² + 2y + 1 + y² + y
    0 = 2y² − y − 3
    0 = 2y² + 2y − 3y − 3
    0 = 2y(y + 1) − 3(y + 1)
    0 = (2y − 3)(y + 1)
    First solution:
    y + 1 = 0
    ⇒ y = −1
    ⇒ x = (y + 5)/3 = (−1 + 5)/3 = 4/3
    ⇒ AC = 3x − 3 = 3*(4/3) − 3 = 4 − 3 = 1
    ⇒ AB = 3x − 5 = 3*(4/3) − 5 = 4 − 5 = −1
    ⇒ BC = 3x − 4 = 3*(4/3) − 4 = 4 − 4 = 0
    This is not a valid solution.
    Second solution:
    2y − 3 = 0
    ⇒ y = 3/2
    ⇒ x = (y + 5)/3 = (3/2 + 5)/3 = (3/2 + 10/2)/3 = (13/2)/3 = 13/6
    ⇒ AC = 3x − 3 = 3*(13/6) − 3 = 13/2 − 3 = 13/2 − 6/2 = 7/2
    ⇒ AB = 3x − 5 = 3*(13/6) − 5 = 13/2 − 5 = 13/2 − 10/2 = 3/2
    ⇒ BC = 3x − 4 = 3*(13/6) − 4 = 13/2 − 4 = 13/2 − 8/2 = 5/2
    Now we are able to calculate the area and the perimeter of the triangle:
    A(ABC) = (1/2)*AB*BC*sin(∠ABC) = (1/2)*(3/2)*(5/2)*sin(120°) = (15/8)*(√2/2) = (15/16)√2
    P(ABC) = AB + BC + AC = 3/2 + 5/2 + 7/2 = 15/2
    Best regards from Germany