Can you find area of the Yellow shaded region? | (Quarter Circle) |

Поделиться
HTML-код
  • Опубликовано: 10 янв 2025

Комментарии • 62

  • @alanthayer8797
    @alanthayer8797 21 день назад +2

    THANKU for Finding Spherical curved areas ! These r better than just finding straight lines areas bcuz NATURE uses Curvature ! Again Thanks as usual !

    • @PreMath
      @PreMath  21 день назад +1

      I'm glad you find it interesting! 😊
      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @jimlocke9320
    @jimlocke9320 21 день назад +5

    At 4:15, instead of computing the area of ΔAOB and deducting the area of ΔAPC, we can compute the area of trapezoid PCBO. To find the area of a trapezoid, find half the sum of the lengths of the two parallel sides ("bases"), then multiply that result by the distance between the parallel sides ("height"). The bases are PC = 2√2 and OB = 4√2, which sum to 6√2. The height is OP or 2√2. Area of PCBO = (1/2)(PC + OB)(OP) = (1/2)(6√2)(2√2) = 12. We deduct the quarter circle area = 2π, to find the yellow shaded area equals 12 - 2π, as PreMath also found.

    • @phungpham1725
      @phungpham1725 21 день назад

      Very clever solution! Thank you so much😊😊😊

    • @PreMath
      @PreMath  21 день назад

      Excellent approach!😀
      Thanks for sharing ❤️🙏

  • @michaelkouzmin281
    @michaelkouzmin281 21 день назад +5

    We can find area of trapezoid OPCB = (PC+OB)*PO/2 = 12and deduct quarter circle PCO area 2*pi.

    • @PreMath
      @PreMath  21 день назад

      Thanks for sharing your approach! ❤️

  • @JLvatron
    @JLvatron 21 день назад +2

    Solved it in my head!
    Great video!

    • @PreMath
      @PreMath  21 день назад +1

      Excellent! Thanks for sharing!❤️

  • @predator1702
    @predator1702 20 дней назад

    Amazing explanation, tank you teacher 👍.

  • @panavpasricha
    @panavpasricha 20 дней назад

    It is honestly a pretty easy question. I solved it in my mind. Such questions should come in exams

    • @dantallman5345
      @dantallman5345 20 дней назад

      D’Oh! I got it wrong, a bookkeeping mistake someplace and that with using pen and paper. 🥴 It looked easy to me going in.

    • @panavpasricha
      @panavpasricha 20 дней назад

      @dantallman5345 every problem is difficult unless you try it and get a hold of it. So keep trying and never quit 🤞

  • @cyruschang1904
    @cyruschang1904 21 день назад +1

    You draw a horizontal line from the center of the semicircle to its circumference, it corresponds to the radius and the top of a trapezoid
    The yellow area = the trapezoid area - half of the semicircle area = (4/√2 + 8/√2)(4/√2)/2 - (π/4)(4/√2)^2 = 12 - 2π

    • @PreMath
      @PreMath  21 день назад +1

      Excellent! Thanks for sharing ❤️

    • @cyruschang1904
      @cyruschang1904 20 дней назад

      @ Thank YOU

  • @MrPaulc222
    @MrPaulc222 21 день назад +2

    Call AO and BO, R, and they are each 8/sqrt(2) which = 4*sqrt(2).
    The semicircle radius is half that, so r = 2*sqrt(2).
    POBC is a trapezoid whose area is (4*sqrt(2) + 2*sqrt(2))/2 * 2*sqrt(2).
    (6*sqrt(2))/2 = 3*sqrt(2)
    (3*sqrt(2))*(2*sqrt(2)) = 6*2 = 12.
    From this, subtract the area PCO.
    A full small circle would be 8pi, so PCO is 2pi.
    Yellow area = 12 - 2pi = 12 - (2(3.142)) = 12 - 6.284 = 5.716 un^2 (rounded).
    I've now looked. Yes, our methods were similar, except that I subtracted the small quadrant from the trapezoid.
    Thanks again. Great video.

    • @PreMath
      @PreMath  21 день назад

      Excellent! Nice approach!
      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @jamestalbott4499
    @jamestalbott4499 21 день назад +1

    Thank you!

    • @PreMath
      @PreMath  21 день назад

      You are very welcome!
      Thanks for the feedback ❤️

  • @Pippinn13
    @Pippinn13 20 дней назад

    I can only assume the purpose of the quarter circle AOB is to trick people into the wrong answer. Or force them into a long winded solution where they add back the area of the semicircle outside the triangle AOB.

  • @marioalb9726
    @marioalb9726 21 день назад +1

    R= 8/√2=4√2cm ; r=½R=2√2 cm
    A = A₁ - A₂ = ½bh - ½r²(α-sinα)
    A = ½R½R - ½(2√2)²[π/2-sin(π/2)]
    A = ¼(4√2)² - 4(π/2-1) = 8 - (2π-4)
    A = 12-2π cm² = 5,717cm² ( Solved √ )

  • @himo3485
    @himo3485 20 дней назад

    AO=OB=4√2 AP=PO=2√2
    Yellow shaded area = 4√2*4√2*1/2 - 2√2*2√2*1/2 - 2√2*2√2*π*1/4 = 12 - 2π

  • @AbdulJaleel-rd5ul
    @AbdulJaleel-rd5ul 21 день назад +1

    Deduct area of quarter circle from area of trapezium PCBO.

    • @PreMath
      @PreMath  21 день назад

      That's a great approach! 👍
      Thanks for the feedback ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 21 день назад +2

    S=12-2π=2(6-π)≈5,71

    • @PreMath
      @PreMath  21 день назад +1

      Excellent!
      Thanks for sharing ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 21 день назад +1

    We may use similarity of triangles theorem in case of triangles APC & AOB
    AP/AB=4/8=1/2
    Hence PC = 1/2 OB =r/2
    AP = 1/2 AO =r/2
    Now In 🔺 APC
    2*r^2/4 = 16
    > r =4√2 units
    Now area AOB =1/2 *r^2
    =16 sq units
    area of APC =1/2*(r/2)^2
    = 4 sq units
    From triangle AOB or APC
    we notice those are isosceles rt triangles.
    Hence ang OAB or angle PAC is 45 degrees
    Hence central angle OPC is 45*2 =90 degrees
    Hence area of small quarter circle =[π*(r/2)^2]/4 =[22/7 *32/4]/4
    =22*32/(7*4*4)=44/7 sq units
    Area of Yellow region
    = AOB - APC - small quarter circle
    =16 -4-44/7
    =12-44/7
    =5.7142 sq units (approx)

  • @marcgriselhubert3915
    @marcgriselhubert3915 21 день назад +1

    The radius R of the big circle is OA = 8/sqrt(2) = 4.sqrt(2) and the radius r of the small circle is OP = OA/2 = 2.sqrt(2). If we draw from A a parallel at (OB) and from C a parallel at (OA) we obtain a rectangle containing the small circle, tangent to the small circle in C and whose area is R.r = 16. The area inside this rectangle and outside the small circle is then 16 - (Pi.(r^2)/2) = 16 - 4.Pi. We separate the yellow shaded region into 2 regions: The first is the region left of the parallel at (OA) from C and the second is the right isosceles triangle on the right. The area of the first region is (16 - 4.Pi)/2 = 8 - 2.Pi and the area of the second one is (r^2)/2 = 4, so finally the area of the yellow shaded region is (8 - 2.Pi) + 4 = 12 - 2.Pi.

    • @PreMath
      @PreMath  21 день назад

      Excellent!
      Thanks for sharing ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 20 дней назад

    Another (simpler) method would be to consider the yellow shaded region as the trapezoïd OPCB less a quater of the small circle. (When R and r are known):
    Area of trapezoïd: ((PC + OB)/2).OP = ((r + R)/2).r = (((4.sqrt(2 + 2.sqrt(2))/2).(2.sqrt(2) = (3.sqrt(2)).(2.sqrt(2)) = 12
    Area of quater of small circle: Pi.((r^2)/4) = Pi.(8/4) = 2.Pi. So our answer is 12 - 2.Pi.

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 20 дней назад

    In 🔺 AOB, mid points of AO and AB are P and C respectively.
    Hence PC ll OB (OB =r) ang OPC = 180 - ang AOB =90 degrees
    PC =1/2 *OB =r/2
    Now from rt 🔺 AOB we may get
    r√2 =8 > r=4√2 units OB=4√2 units
    r/2=2√2 units PC =2√2 units
    Area of trapezium CPOB
    = 1/2(r/2 +r) sq units
    =1/2*2√2*(4√2+2√2)sq units
    =12 sq units
    Area of small quarter circle
    =π/4(2√2)^2=2π sq units
    Area of yellow region
    = area of trapezium - area of small quarter circle
    = (12-2π)sq units
    = 5.7142 sq units (approx) (putting π=22/7)

  • @andrepiotrowski5668
    @andrepiotrowski5668 20 дней назад

    Triangle APC is similar to triangle AOB, the sides of APC are half as long as those of APC, so the area of APC is a quarter of the area of AOB.
    Do you never use the Ray Theorem?

  • @giuseppemalaguti435
    @giuseppemalaguti435 21 день назад +1

    R=4√2,r=2√2...Ay=(4√2)^2/2-(4π-(2π-4))=16-(2π+4)=12-2π

    • @PreMath
      @PreMath  21 день назад

      Excellent!
      Thanks for sharing ❤️

  • @murdock5537
    @murdock5537 21 день назад +1

    Nice! 2(6 - π) ≈ 40/7

    • @PreMath
      @PreMath  21 день назад +1

      Excellent!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 20 дней назад +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    The triangle OAB is a right triangle, so we can apply the Pythagorean theorem. With R being the radius of the quarter circle and r being the radius of the inscribed semicircle we obtain:
    OA² + OB² = AB²
    R² + R² = 8²
    2R² = 64
    R² = 32
    ⇒ R = √32 = 4√2
    ⇒ r = PO = PA = OA/2 = R/2 = 4√2/2 = 2√2
    Since AP/AO=r/R=(r/2)/r=1/2 and AC/AB=AC/(AC+BC)=AC/(2*AC)=1/2 and ∠PAC=∠OAB, we know that the triangles PAC and OAB are similar. Therefore PAC is also a right triangle. So we can conclude:
    PC/OB = AC/AB = 1/2 ⇒ PC = OB/2 = R/2 = r
    Since PAC is a right triangle (∠APC=90° ⇒ ∠OPC=90°), we know that OB and PC are parallel. Therefore we can conclude that OBCP is a trapezoid. Now we are able to obtain the area of the yellow region:
    A(yellow)
    = A(trapezoid OBCP) − A(quarter circle POC)
    = (1/2)*(OB + PC)*OP − πr²/4
    = (1/2)*(R + r)*r − πr²/4
    = (1/2)*(2r + r)*r − πr²/4
    = 3r²/2 − πr²/4
    = (6 − π)*r²/4
    = (6 − π)*(2√2)²/4
    = (6 − π)*8/4
    = 12 − 2π
    ≈ 5.717
    Best regards from Germany

    • @PreMath
      @PreMath  20 дней назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @wasimahmad-t6c
    @wasimahmad-t6c 21 день назад +1

    19.433

  • @alexniklas8777
    @alexniklas8777 21 день назад +1

    S= 12-2π= 5,716
    Thanks sir!

    • @PreMath
      @PreMath  21 день назад +1

      You are very welcome!
      Thanks for the feedback ❤️

  • @wackojacko3962
    @wackojacko3962 21 день назад +1

    @ 8:33 you could have at least used 16 of the 105 trillion digits of pi we know. 😊

    • @PreMath
      @PreMath  21 день назад +1

      😀
      Thanks for the feedback ❤️

  • @billcame6991
    @billcame6991 17 дней назад

    I did it differently but I came up with the same answer in a few minutes.

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 21 день назад +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) AB = 8 ; AC = BC = 4
    02) OA = OB = R (Radius)
    03) 2R^2 = 64 ; R^2 = 32 ; R = sqrt(32) ; R = 4sqrt(2)
    04) Triangle [AOB] Area = 16 sq un
    05) Quarter of Circle Area (QCA) = 8Pi sq un
    06) Semicircle Area (SA) = 4Pi sq un
    07) Remainig Area = (QCA - SA) = (8 - 4)Pi = 4Pi sq un
    08) Triangle [OBC] Area = 8 sq un
    09) SCA - TA = (4Pi - 8) sq un
    10) Yellow Shaded Area (YSA) = 8 - ((4Pi - 8) / 2)
    11) YSA = 8 - (2Pi - 4) = 8 - 2Pi + 4 = (8 + 4) - 2Pi
    12) YSA = (12 - 2Pi) sq un
    13) YSA ~ 5,72 sq un
    Therefore,
    OUR BEST ANSWER IS :
    Yellow Shaded Area is equal to (12 - 2Pi) Square Units or approx. equal to 5,72 Square Units.

    • @PreMath
      @PreMath  21 день назад +1

      Excellent!
      Thanks for sharing ❤️🙏

    • @LuisdeBritoCamacho
      @LuisdeBritoCamacho 20 дней назад

      @@PreMath
      Thank You Very Much. Can you, please, check my Resolution of the Last Problem? The one with Green Shaded Area. I am not certain about my Proposal.
      TYVM. Seasons Greetings From Portugal (Al - Andalus).

    • @PreMath
      @PreMath  19 дней назад

      @@LuisdeBritoCamacho
      Thanks❤

  • @santiagoarosam430
    @santiagoarosam430 20 дней назад

    [(1/2)(8²/2)(3/4)]-[(4/√2)²π/4] =12-2π u².
    Gracias y saludos

  • @zawatsky
    @zawatsky 21 день назад

    От площади ниже средней линии надо отнять четверть круга. Площадь этой прямоугольной трапеции составляет 3/8 от всего достроенного квадрата - 32, т. е. 3*32/8=3*4=12. Площадь круга πø²/4, делим ещё на 4, получаем πø²/16=32π/16=2π. Итого искомая площадь 12-2π.

    • @PreMath
      @PreMath  21 день назад

      Excellent!
      Thanks for sharing ❤️

    • @zawatsky
      @zawatsky 21 день назад

      @@PreMath u wlcm.👍

  • @sergioaiex3966
    @sergioaiex3966 21 день назад +1

    Solution:
    Yellow Shaded Area = ∆ AOB Area - ∆ APC Area - Quarter Circle Area OPC ... ¹
    OA = OB = r
    r = 8/√2
    r = 8√2/2
    r = 4√2
    AP = PC = 4√2/2 = 2√2
    Therefore
    ∆ AOB Area = ½ b h
    ∆ AOB Area = ½ 4√2 . 4√2
    ∆ AOB Area = 16
    ∆ APC Area = ½ b h
    ∆ APC Area = ½ 2√2 . 2√2
    ∆ APC Area = 4
    Quarter Circle Area OPC = ¼ π r² = ¼ π (2√2)² = 2π
    Replacing in Equation ¹
    Yellow Shaded Area (YSA) = 16 - 4 - 2π
    YSA = 12 - 2π Square Units ✅
    YSA ≈ 5,7168 Square Units ✅

    • @PreMath
      @PreMath  21 день назад

      Excellent!
      Thanks for sharing ❤️

  • @zawatsky
    @zawatsky 20 дней назад

    А этот маленький кусочек, выходит, 2π-32/8, итого 2π-4.

  • @nenetstree914
    @nenetstree914 21 день назад +1

    12-2pi

    • @PreMath
      @PreMath  21 день назад

      Excellent!
      Thanks for sharing ❤️

  • @wasimahmad-t6c
    @wasimahmad-t6c 10 дней назад

    4+1.7168=5.7168

  • @wasimahmad-t6c
    @wasimahmad-t6c 19 дней назад

    8÷1.4142135624=5.656854×5.656854=32÷2=16+3.433=19.433