Can you find area of the yellow circle? | (Fun Geometry Problem) |

Поделиться
HTML-код
  • Опубликовано: 26 дек 2024

Комментарии • 2

  • @matthieudutriaux
    @matthieudutriaux 9 часов назад +1

    Great job !
    We can't do better.
    I just noticed, because PQRS is a circumscribed quadrilateral and a cyclic quadrilateral, that :
    area=sqrt((s-a)*(s-b)*(s-c)*(s-d)) with 2*s=a+b+c+d and a+d=b+c
    area=1/4*sqrt((-a+b+c+d)*(a-b+c+d)*(a+b-c+d)*(a+b+c-d))
    16*area^2=(-a+b+c+d)*(a-b+c+d)*(a+b-c+d)*(a+b+c-d)
    16*area^2=(2*d)*(2*c)*(2*b)*(2*a)
    16*area^2=16*a*b*c*d
    area^2=a*b*c*d
    area=sqrt(a*b*c*d)
    area^2=a*b*c*(-a+b+c) with a=10*sqrt(3) and b=40*sqrt(3)
    (area/(10*sqrt(3))^2)^2=A*B*C*(-A+B+C) with A=a/(10*sqrt(3))=1 and B=b/(10*sqrt(3))=4 and C=c/(10*sqrt(3)) and D=d/(10*sqrt(3))
    (1800*sqrt(6)/300)^2=1*4*C*(-1+4+C)
    216=4*C*(C+3)
    54=C^2+3*C
    C^2+3*C-54=0
    (C-6)*(C+9)=0
    C=6 (because C=-9 is impossible)
    D=-A+B+C=-1+4+6=9
    area=1/2*(a+b+c+d)*r
    area=1/2*(A+B+C+D)*10*sqrt(3)*r
    1800*sqrt(6)=1/2*(1+4+6+9)*10*sqrt(3)*r
    18*sqrt(2)=r
    648=r^2
    A(circle)=Pi*r^2=648*Pi m²

  • @vcvartak7111
    @vcvartak7111 2 дня назад

    Problem was too lengthy,but some new concepts are learned