Can you find Perimeter and Area of the triangle? | (Trigonometry) |

Поделиться
HTML-код
  • Опубликовано: 10 янв 2025

Комментарии • 37

  • @anatoliy3323
    @anatoliy3323 19 дней назад +1

    💯👍🎄 Merry Christmas 🎁 Be happy and all the best to you, Professor!

    • @PreMath
      @PreMath  19 дней назад

      Merry Christmas! Wishing you a happy holiday season as well! 😊🙏

  • @soli9mana-soli4953
    @soli9mana-soli4953 19 дней назад +3

    I solved without trigonometry tracing the height AH and seeing that AHB is a right triangle of 30,60,90 degree whose hypotenuse is 3x-5. It leads to the same quadratic equation without the cosine law

  • @RK-tf8pq
    @RK-tf8pq 18 дней назад +1

    Just substitute 3X - 5 as “a”, then the 3 sides would be “a”, “a+1” and “a+2”. Then the calculations are simpler. At the end we don’t even need to change “a” back to X.

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l 19 дней назад

    Wow Sirr ❤❤ Very Interesting Video❤❤❤ Thanks for sharing ❤❤

  • @jamestalbott4499
    @jamestalbott4499 18 дней назад

    Thank you!

  • @kalavenkataraman4445
    @kalavenkataraman4445 19 дней назад +2

    Perimeter = 7.5 , area =1.623 Sq.units(15× root3÷16)

  • @sergioaiex3966
    @sergioaiex3966 19 дней назад +2

    Solution:
    First, we've to calculate x, by using the Law of Cosines:
    (3x - 3)² = (3x - 4)² + (3x - 5)² - 2 (3x - 4) (3x - 5) cos 120°
    9x² - 18x + 9 = 9x² - 24x + 16 + 9x² - 30x + 25 + 9x² - 15x - 12x + 20
    9x² - 18x + 9 = 27x² - 81x + 61
    18x² - 63x + 52 = 0
    x = (63 ± √225)/36
    x = (63 ± 15)/36
    x' = 78/36 = 39/18 = 13/6 (Accepted)
    x" = 48/36 = 12/9 = 4/3 (Rejected)
    Therefore x = 13/6
    Now we have to calculate the sides length
    3x - 5 = 3 (13/6) - 5 = 39/6 - 5 = (39 - 30)/6 = 9/6 = 3/2
    3x - 4 = 3 (13/6) - 4 = 39/6 - 4 = (39 - 24)/6 = 15/6 = 5/2
    3x - 3 = 3 (13/6) - 3 = 39/6 - 3 = (39 - 18)/6 = 21/6 = 7/2
    Area = ½ × 3/2 × 5/2 × sin 120°
    Area = ½ × 3/2 × 5/2 × √3/2
    Area = (15√3)/16 Square Units ✅
    Area ≈ 1.6237 Square Units ✅
    Perimeter = 3/2 + 5/2 + 7/2
    Perimeter = 15/2 Units ✅
    Perimeter = 7.5 Units ✅

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq 19 дней назад

      This has so many solutions. May see and comment on the two solutions offered by me

  • @AmirgabYT2185
    @AmirgabYT2185 19 дней назад +1

    P=7,5
    S=15√3/16≈1,624

  • @Abdelfattah-hr8tt
    @Abdelfattah-hr8tt 19 дней назад +1

    I'm so glad to be one of your fallwers

    • @PreMath
      @PreMath  19 дней назад

      Thanks dear ❤️🙏
      You are the best! ❤️
      Thanks for the feedback ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 19 дней назад +1

    *Let's name t = 3.x -4, The side lenthes of the triangle are now BA = t - 1 , BC = t and AC = t + 1.
    The law of cosines in the triangle ABC gives: (t + 1)^2 = t^2 + (t - 1)^2 -2.t.(t - 1).cos(120°), or: t^2 +2.t + 1 = t^2 + t^2 -2.t + 1 +t^2 - t (as cos(120°) = -1/2).
    That gives: 2.t^2 - 5.t = 0 and then t = 5/2 (t cannot be equal to 0 as the lengthes are positive). So t = 3.x -4 = 5/2 (and x = 13/6).
    *The perimeter of the triangle is 3.t = 15/2.
    *The area of the triangle (1/2).BA.BC.sin(120°) = (1/2).t.(t -1).(sqrt(3)/2) = (1/2).(5/2).(3/2).(sqrt(3)/2) = (15/16).sqrt(3).

    • @jimlocke9320
      @jimlocke9320 19 дней назад

      Nice observation that simplifies the algebra!

  • @cyruschang1904
    @cyruschang1904 19 дней назад

    Perimeter = (3x - 3) + (3x - 4) + (3x - 5) = 9x - 12
    Area = (height)(base)/2 = (Sin60°)(3x - 5)(3x - 4)/2 = (√3)(3x - 5)(3x - 4)/4
    [(Sin60°)(3x - 5)]^2 + [(Cos60°)(3x - 5)]^2 = (3x - 5)^2
    To find x
    (3x - 3)^2 = (3x - 4)^2 + (3x - 5)^2 - 2(3x - 4)(3x - 5)(Cos120°)
    18x^2 - 63x + 52 = 0
    x = [63 +/- √(63)(63) - 4(18)(52)] / 36 = [21 +/-√(21)(21) - 4(2)(52)] / 12 = 13/6 or 4/3 (the base 3x - 4 cannot be zero)
    Perimeter = 9(13/6) - 12 = 39/2 - 12 = 7.5
    Area = (√3)(13/2 - 5)(13/2 - 4)/4 = (√3)(3/2)(5/2)/4 = (15√3)/16

  • @alexundre8745
    @alexundre8745 19 дней назад

    Bom dia Mestre
    Irei usar a Lei dos cossenos e produtos notáveis p resolver essa questão
    Grato

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 19 дней назад +1

    Sir
    1) we may write the side
    3x -4 =a
    Then 3x - 5=a -1
    3x -3= a +1
    2)Perimeter =3a
    3)1/2*a*(a-1)sin120
    4)
    Cos 120 =[(a-1)^2+a^2 -(a+1)^2]/[2a(a-1)]
    =(a^2-2a +1+a^2 -a^2-2a-1)/2a(a-1)
    =(a^2-4a)/2a(a-1)
    =(a -4)/(2a-2)
    > - 1/2 =(a-4)/(2a -2)
    > a=5/2 units
    5)Perimeter =3a=3*5/2=15/2 units
    6)Hence the legs of ang 120 degrees
    are a=5/2 and a-1=5/2 -1=3/2
    Area =1/2*5/2* 3/2*sin 120
    =1/2*5/2*3/2*√3/2
    =1*5*3*√3/2*2*2*2
    =15√3/16 sq units
    [ ***
    please note that this solution does not have any - ve value of length and no question of rejecting the - -ve arose. ]

    • @georgebliss964
      @georgebliss964 18 дней назад

      Yes, substituting a, (a-1) & (a+1) for the side lengths simplifies the Cosine Rule calculations and eliminates the need to solve for x.

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq 18 дней назад

      @georgebliss964 There is another solution in comments.
      Here I said the problem may have a lot of solutions.
      Please see it and comment

  • @sorourhashemi3249
    @sorourhashemi3249 18 дней назад

    Thanks chalenging. Draw a right line from A and mark it as F. We have a right triangle AFB in which B angle is 60 and A angle is 30. The side is FB is half of the cord AB. = 3x-5/2 focus on right triangle AFC and by phytagorus theorum AF^2+{( 3x-5/2/2)+(3x-4)}^2=(3x-3)
    ^2)===> X=2.16

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 19 дней назад

    Here there is another sol
    Drop a perpendicular AD on extended CB
    In 🔺 ADB is a special 🔺 of 30-60-90
    So if BD =1 , AB =2
    Hence AB =3x -5 = 2
    > x =7/3
    BC =3x -4 =3
    AC = 3x -3 =4
    Hence the sides of triangle ABC are 2,3,4
    Perimeter = 2+3+5=9 units
    Area =1/2*2*3*sin120
    =3sin 120
    =3*√3/2=3√3/2sq units
    This have so many solutions as we take different values of BD

  • @uwelinzbauer3973
    @uwelinzbauer3973 19 дней назад +1

    Thanks professor for sharing this interesting video!
    Merry Christmas to all who celebrate it.
    I hope to do not wrong to wish a happy winter solstice to everyone 😊
    To my opinion this is not political, not dependent on what kind of belief one has, including atheists, even of no significance if earth is flat or a globe.
    It can be an occasion to send best wishes to anyone, like peace, health and happiness. For those who live in the north its the expectation of light and warmth will come back.

    • @PreMath
      @PreMath  18 дней назад +1

      So kind of you dear🙏❤️
      Merry Christmas! Wishing you a happy holiday season as well! 😊🙏
      Stay blessed 😀

  • @alster724
    @alster724 15 дней назад

    Merriest Christmas Team Premath

  • @murdock5537
    @murdock5537 19 дней назад

    Very nice, many thanks, Sir! Merry Christmas!
    φ = 30° → cos⁡(4φ) = -cos⁡(6φ - 4φ) = -cos⁡(2φ) = -sin⁡(φ) = -1/2
    sin⁡(4φ) = sin⁡(6φ - 4φ) = sin⁡(2φ) = cos⁡(φ) = √3/2
    ∆ ABC → ABC = 4φ; AB = 3x - 5; BC = 3x - 4; AC = 3x - 3; area & perimeter ∆ ABC = ?
    3x - 3 ∶= a → 3x - 4 = a - 1 → 3x - 5 = a - 2 →
    a^2 = (a - 1)^2 + (a - 2)^2 - 2(a - 1)(a - 2)cos⁡(4φ) = (a - 1)^2 + (a - 2)^2 + (a - 1)(a - 2) →
    a^2 - 9a + 7 = 0 → a1,a2 = (1/4)(9 ± 5) → a1 = 1 → a - 2 < 0 ≠ solution →
    a2 = 7/2 = 3x - 3 → x = 13/6 → 3x - 3 = 7/2 → 3x - 4 = 5/2 → 3x - 5 = 3/2 →
    perimeter ∆ ABC = 15/2 → area ∆ ABC = (1/2)sin⁡(4φ)(a - 1)(a - 2) = 15√3/16

  • @phungpham1725
    @phungpham1725 19 дней назад

    1/ Label AB= (3x-5)= a
    -> AC= (3x-5) +2=(a+2) and BC=(a+1)
    2/ Drop the height AH to BC-> AH = a sqrt3/2 and BH= a/2 ( the triangle AHB is a 30/90/60 one)
    --> HC = a/2 + a+1= (3a+2)/2
    By using the Pythagorean theorem
    sq (asqt3/2) + sq((3a+2)/2))= sq( a+2)
    --> 2sqa-a-3 = 0
    -> a= 3/2 ( negative result rejected)
    --> 3x -5 = 3/2
    x= 13/6
    Perimeter= 7.5 units
    Area= 15sqr3/ 16😅😅😅

  • @wasimahmad-t6c
    @wasimahmad-t6c 10 дней назад

    4+5+6=15permeter 8.9452 area

  • @alexniklas8777
    @alexniklas8777 19 дней назад

    I solved the problem using your method:
    x= 13/6; Р=7,5; S= a×b×sin(60°)/2=
    =(3/2×5/2×√3/2)/2=15√3/16
    Thanks sir!❤

  • @unknownidentity2846
    @unknownidentity2846 17 дней назад

    Let's do it again with another method:
    .
    ..
    ...
    ....
    .....
    First of all we add point D such that ACD is a right triangle and B is located on CD. Then we have ∠ADB=90° and ∠ABD=180°−120°=60°. Therefore ABD is a 30°-60°-90° triangle and we can conclude:
    BD = AB/2 = (3x − 5)/2
    AD = √3*BD = (√3/2)(3x − 5)
    Now we can apply the Pythagorean theorem to the right triangle ACD:
    AC = 3x − 3 = y + 2
    AD = (√3/2)(3x − 5) = (√3/2)y
    CD = BC + BD = (3x − 4) + [(3x − 5)/2] = (y + 1) + y/2 = 3y/2 + 1
    AC² = AD² + CD²
    (y + 2)² = [(√3/2)y]² + (3y/2 + 1)²
    y² + 4y + 4 = 3y²/4 + 9y²/4 + 3y + 1
    0 = 2y² − y − 3
    ... (see my first comment) 🙂

  • @unknownidentity2846
    @unknownidentity2846 19 дней назад

    Let's face this challenge:
    .
    ..
    ...
    ....
    .....
    We should be able to find the value of x by applying the law of cosines. With y=3x−5 we obtain:
    AC² = AB² + BC² − 2*AB*BC*cos(∠ABC)
    (3x − 3)² = (3x − 5)² + (3x − 4)² − 2*(3x − 5)*(3x − 4)*cos(120°)
    (y + 2)² = y² + (y + 1)² − 2*y*(y + 1)*(−1/2)
    (y + 2)² = y² + (y + 1)² + y*(y + 1)
    y² + 4y + 4 = y² + y² + 2y + 1 + y² + y
    0 = 2y² − y − 3
    0 = 2y² + 2y − 3y − 3
    0 = 2y(y + 1) − 3(y + 1)
    0 = (2y − 3)(y + 1)
    First solution:
    y + 1 = 0
    ⇒ y = −1
    ⇒ x = (y + 5)/3 = (−1 + 5)/3 = 4/3
    ⇒ AC = 3x − 3 = 3*(4/3) − 3 = 4 − 3 = 1
    ⇒ AB = 3x − 5 = 3*(4/3) − 5 = 4 − 5 = −1
    ⇒ BC = 3x − 4 = 3*(4/3) − 4 = 4 − 4 = 0
    This is not a valid solution.
    Second solution:
    2y − 3 = 0
    ⇒ y = 3/2
    ⇒ x = (y + 5)/3 = (3/2 + 5)/3 = (3/2 + 10/2)/3 = (13/2)/3 = 13/6
    ⇒ AC = 3x − 3 = 3*(13/6) − 3 = 13/2 − 3 = 13/2 − 6/2 = 7/2
    ⇒ AB = 3x − 5 = 3*(13/6) − 5 = 13/2 − 5 = 13/2 − 10/2 = 3/2
    ⇒ BC = 3x − 4 = 3*(13/6) − 4 = 13/2 − 4 = 13/2 − 8/2 = 5/2
    Now we are able to calculate the area and the perimeter of the triangle:
    A(ABC) = (1/2)*AB*BC*sin(∠ABC) = (1/2)*(3/2)*(5/2)*sin(120°) = (15/8)*(√2/2) = (15/16)√2
    P(ABC) = AB + BC + AC = 3/2 + 5/2 + 7/2 = 15/2
    Best regards from Germany

  • @reynaldowify
    @reynaldowify 19 дней назад

    Yhank you. I thought that x had to be intyeger.

  • @blogfilmes1134
    @blogfilmes1134 19 дней назад +1

    Acertei !!!!!

    • @PreMath
      @PreMath  19 дней назад +1

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @imetroangola17
    @imetroangola17 19 дней назад

    *Solução:*
    Seja y = 3x - 5. Daí,
    BC= y + 1 e AC = y + 2. Você pode usar a lei dos cossenos, porém , vamos construir uma perpendicular AD em relação ao lado BC. Assim,
    O ângulo ABD = 60° e, usando a definição de seno e cosseno no triângulo retângulo ∆ABD, temos:
    BD = y/2 e AD=(y√3)/2. Assim, DC = y/2 + y+1 = (3y+2)/2. Por Pitágoras no ∆ACD:
    (y+2)² = [(y√3)/2]² + [(3y+2)/2]²
    y²+4y+4 = 3y²/4+(9y²+12y+4)/4
    y²+4y+4 = (12y²+12y+4)/4
    y²+4y+4 = 3y²+3y+1
    2y² - y -3 = 0, com y > 0. Resolvendo essas equação do 2° grau, obtemos y = 3/2, logo:
    AB=3/2, BC=5/2, AC=7/2 e AD=3√3/4. Temos:
    *_Perímetro=_* 3/2 + 5/2 + 7/2 = *15/2 U*
    *_Área=_* AD×BC/2 =
    = 5/2 × 3√3/8 = *15√3/16 U.Q*

  • @giuseppemalaguti435
    @giuseppemalaguti435 19 дней назад

    Col teorema del coseno risulta 18x^2-63x+52=0..x=39/18,x=4/3(no)..per cui i lati sono 7/2,3/2,5/2...A=(1/2)(3/2)(5/2)sin120=15√3/16..P=15/2

  • @wackojacko3962
    @wackojacko3962 19 дней назад +1

    First and foremost as a US citizen I follow the Constitution of the United States of America. If anyone is offended by that, I don't care! Be offended...🤣. @ 7:43 , never say never! Things get very strange very fast in this 4-dimensional space-time continuum.😊

    • @PreMath
      @PreMath  19 дней назад +1

      😀
      Thanks for sharing ❤️