Japanese Math Olympiad | A Very Nice Geometry Problem

Поделиться
HTML-код
  • Опубликовано: 10 фев 2025
  • GET MY EBOOKS
    •••••••••••••••••••••••
    150 Challenging Puzzles with Solutions : payhip.com/b/y...
    Function : payhip.com/b/y...
    Sequence and Series : payhip.com/b/B...
    Differentiation : payhip.com/b/W...
    Indefinite Integration : payhip.com/b/8...
    Definite Integration + Area under the Curve : payhip.com/b/1...
    Trigonometry : payhip.com/b/8...
    OTHER CHAPTERS : COMING SOON.....
    --------------------------------------------------------------------------------
    Join the channel to become a member
    / @mathbooster

Комментарии • 24

  • @georgexomeritakis2793
    @georgexomeritakis2793 Месяц назад +2

    This is a great puzzle. You can solve it faster focusing on the isosceles triangle APC you constructed in the beginning. Just draw the bisector AM of angle PAC with M being the center point of base PC. Now notice that CM=CO. Suppose N is the point that AM crosses BO. Now the quadrilateral CONM comprises of two isosceles triangles OCM and ONM, sharing common base OM. Now CN is the bisector of angle OCM, so angle OCN = 80/2 = 40.

    • @marcociot
      @marcociot Месяц назад +1

      Why is CM equal to CO?

    • @marcociot
      @marcociot Месяц назад +1

      Oh, I see!
      60-30-triangle: so OC is half of BC and CP = CB.

  • @mihaipuiu6231
    @mihaipuiu6231 Месяц назад +3

    Nice demonstration.Thank you very much.

  • @ДмитрийИвашкевич-я8т
    @ДмитрийИвашкевич-я8т Месяц назад +7

    tgx/tg10°=tg60°/tg20°
    tg3α=tgα*tg(60°-α)*tg(60°+α)
    tg60°=tg20°*tg40°*tg80°
    tgx=tg60°*tg10°/tg20°
    tgx=tg40°*tg10°*tg80°=tg40°
    x=40°

    • @vcvartak7111
      @vcvartak7111 Месяц назад +2

      But proof of tan(3a) in terms of tan(60-A) is needed?

    • @ДмитрийИвашкевич-я8т
      @ДмитрийИвашкевич-я8т Месяц назад +5

      @vcvartak7111 tgα=t
      tg3α=(3t-t^3)/(1-3t^2)
      tg3α=t(√3+t) (√3-t)/[(1-t√3) (1+t√3)]=t[(√3+t)/(1-t√3)]*[(√3-t)/(1+t√3)]=tgα*tg(60°+α)*tg(60°-α)

    • @imetroangola17
      @imetroangola17 Месяц назад +1

      Verifiquei isso, porém, resolver isso, não é fácil!

    • @ДмитрийИвашкевич-я8т
      @ДмитрийИвашкевич-я8т Месяц назад +2

      ​@imetroangola17Формула красивая, запоминается легко, может еще пригодится 🙂

    • @MataniMath
      @MataniMath Месяц назад

      ​@@ДмитрийИвашкевич-я8тnice solution and nice proven

  • @epsom2024
    @epsom2024 Месяц назад

    tanx*tan20°=tan10°*tan60°
    tan(3θ)=tan(60°+θ)*tan(60°-θ)*tanθ
    θ=20°=> tan60°=tan80°*tan40°*tan20°=> tan10°*tan60°=tan40°*tan20°=> x=40°

  • @forest-c1m
    @forest-c1m 19 дней назад

    I couldn’t solve this problem.
    Thank you for your explanation.

  • @Z-eng0
    @Z-eng0 Месяц назад +1

    This was magnificent, absolutely genius.
    I'll never be able to know how people come up with such creative constructions, like, I can solve hard geometry puzzles, but I get stuck on this specific type.
    Can you tell me how your thinking process goes to know these type of problems, please

    • @MathBooster
      @MathBooster  Месяц назад +2

      It takes a lot of practice to get the intuition for solving geometric problems.

    • @Z-eng0
      @Z-eng0 Месяц назад

      @MathBooster I know, I'm just saying that problem solving in general takes practice but it has strategies, for example, sometimes a good strategy in geometry when we see a midpoint, is constructing a circle centred at it, then constructing an extra radius touching 1 side then seeing where that goes.
      So I'm just asking what strategy you used here.

  • @RAG981
    @RAG981 Месяц назад +4

    I do not see what is wrong with tanx = rt3tan10/tan20, which gives x=40.

    • @MataniMath
      @MataniMath Месяц назад

      @RAG981 In ∆ADO, OD = AO.tan10 & in ∆ODC, OD = OC.tan x. In ∆ABO, OB = AO.tan20 & in ∆BOC, OB = OC.tan60 = OC.sqrt3.
      So BD = AO(tan20+tan10) and
      BD = OC(tan x + ✓3), then
      AO(tan20 + tan10) = OC(tan x + ✓3). Since AO = OC.tan x /tan10, then (OC.tan x / tan10)(tan10+tan20) = OC(tan x + ✓3) ------> tan x = ✓3.tan10/tan20, tan x = tan40

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Месяц назад

    {10°A+10°A+20°A+20°A60°C60°C}=180°AAAACC 10^10^20^20^60^60 1^1^2^2^6^6 1^2^3^3^3^3 1^2^1^1^1^3 23(AAAACC ➖ 3AAAACC+2).

  • @wasimahmad-t6c
    @wasimahmad-t6c Месяц назад +1

    40

  • @축복-l1l
    @축복-l1l Месяц назад +2

    asnwer=40 isit

    • @dickroadnight
      @dickroadnight Месяц назад

      (atan(tan(10° )/tan(20°)*tan(60°))*180/π‎ = 40

  • @Klaatù74
    @Klaatù74 Месяц назад

    Questa é Geometria, non Matematica.

  • @joegillian6781
    @joegillian6781 Месяц назад

    激ムズ!