Norway Math Olympiad | A Very Nice Geometry Problem

Поделиться
HTML-код
  • Опубликовано: 25 дек 2024

Комментарии • 32

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب День назад +4

    Let

  • @oscarcastaneda5310
    @oscarcastaneda5310 14 часов назад

    Construct point "O" on QC such that PO = OC. This gives angle POQ = 2Theta, thus angle QPC is 90 degrees.
    Also PQ is sqrt(5) and tan(theta) = 1/2 so PC is 2sqrt(5) and Pythagoras yields X = 5.

  • @soli9mana-soli4953
    @soli9mana-soli4953 3 часа назад

    Once Known that PQ=sqrt5 you can find sin theta = sqrt5/5 and Cos theta=2sqrt5/5 . Setting CQ=x and CP=y with cosine law we can write:
    5=x^2 + y^2 - 2xy*2sqrt5/5
    Setting s=side of the square
    X^2 = s^2 + (s-1)^2
    Y^2 = s^2 + (s-2)^2
    With sines area formula :
    Area(CPQ)=1/2*x*y*sqrt5/5
    With difference between areas:
    Area(CPQ)= s^2 - (s*(s-2)*1/2) - (s*(s-1)*1/2) - 2*1*1/2
    Comparing
    1/2*xy*sqrt5/5=3/2s - 1
    xy*sqrt5/5=3s - 2
    Then substituting in the cosine law equation:
    5=2s^2 - 2S + 1 + 2s^2 - 4s + 4 - 4*(3s - 2)
    4s^2 - 18s + 8 = 0
    S = 4
    X^2 = s^2 +(s-1)^2=4^2 +((4-1)^2= 16+9
    X^2=25
    X=5

  • @ДмитрийИвашкевич-я8т

    Опишем окружность с центром O вокруг треугольника PCQ.

  • @marioalb9726
    @marioalb9726 21 час назад +2

    The only possibility for θ = θ, is that triangle CPQ is a right triangle.
    For any other position of points P and Q, angle θ of right triangle APQ never can be equal to θ of triangle CPQ, and this triangle can't be a right triangle.
    Right triangle APQ:
    c² = 1²+2² = 5² -> c=√5 cm
    Similarly of triangles:
    x/c= c/1 ; x/√5=√5/1
    x = 5 cm ( Solved √ )

    • @user-xz7sv2dn9g
      @user-xz7sv2dn9g 18 часов назад +1

      Altoughmy solution as well. My way: Triangel qap und Triangel cda are Seminar.

    • @3r4kl3s
      @3r4kl3s 18 часов назад

      Can you please explain why CPQ must be a right triangle if θ = θ ?

    • @marioalb9726
      @marioalb9726 16 часов назад +1

      ​​@@3r4kl3s
      If you draw a circumference with diameter x=CQ, this circumference will cross point B, because CBQ is a right triangle. In the same way, will cross point "P", demonstrating that CPQ is a right triangle, and CPQB is a cyclic quadrilateral !!!

    • @marioalb9726
      @marioalb9726 16 часов назад +1

      ​@@3r4kl3s
      Once done all calculations, with any method, and being that triangle inscribed in a square, then if quadrilateral BCPQ meets Ptolomy's theorem, then CPQ is a right triangle.
      Ptolemy's theorem:
      a.c + b.d = e.f
      √5*4+3*2√5 = 5*2√5 (Done √)

  • @spdas5942
    @spdas5942 День назад

    Cut CN=2 and draw a perpendicular from N on CP that cut CQ at M. So, from similar triangle CNM and triangle CPQ X/CM=PQ/NM = > X=CM*(PQ/NM)=sqrt5*(sqrt5/1)=5.

  • @lasalleman6792
    @lasalleman6792 21 час назад

    Go Pythagorean as to triangle PAQ. Angle at point P then becomes 26.56 degrees, as does the angle at C. Going Pythagorean again as to line PQ, gives a distance of square root of 5. Line PQ is the sine of angle C, of triangle CPQ Sine of an angle of 26.56 is .4471. Simply divide the square root of 5, by the sine of 26.56 degrees and this will equal 5 for line CQ. Short and sweet.

    • @d-8664
      @d-8664 8 часов назад +1

      This is wrong you haven't proven that the triangle is a right triangle.

  • @matematicafacilcomprof.jua9231
    @matematicafacilcomprof.jua9231 23 часа назад

    I preferred a faster way.
    Firstly, I found the hypotenuse of the smaller triangle, which is the opposite side of the bigger one. Considering that it is half of the adjacent side as it was with the smaller triangle, it is easy to find x , using only Pythagorean Theorem.

    • @d-8664
      @d-8664 8 часов назад

      This is wrong you haven't proven that the triangle is a right triangle.

  • @imetroangola17
    @imetroangola17 2 часа назад

    *_Solução:_*
    Seja ∠DPC = α. Daí,
    ∠CPQ= 180° - α - θ. No triângulo ∆CQP, ∠PQC= α.
    Usando a Lei do Senos no ∆PCQ:
    *sen θ/PQ = sen α /PC*
    No ∆PDC, temos: sen α= DC/PC e no triângulo PQA:
    PQ² = 2² + 1² (PITÁGORAS)
    PQ=√5. Além disso, sen θ = 1/√5.
    Assim,
    (1/√5)/√5 = (DC/PC) /PC
    1/5 = DC/PC² → *PC² = 5DC.*
    Seja DP = y, consequentemente, DC= y+2. Sendo ∆DCP um triângulo retângulo, por Pitágoras:
    PC² = PD² + DC² (PC² = 5DC)
    5DC = PD² + DC²
    5(y+2) = y² + (y+2)²
    5y + 10 = 2y² + 4y + 4
    2y² - y - 6 = 0, com y > 0.
    y = (1 ± 7)/4 → y = 2. No triângulo retângulo CBQ, vamos ter BC= 4 e BQ = 3 e, por Pitágoras:
    x² = 4² + 3² = 25 → *x = 5.*

  • @santiagoarosam430
    @santiagoarosam430 23 часа назад

    PQ=√5---> Razón de semejanza entre QAP y QPC, s=√5/1=√5---> X=√5*√5 =5.
    Gracias y saludos

    • @marioalb9726
      @marioalb9726 21 час назад +1

      Como supiste que QPC era triangulo rectángulo ???

    • @d-8664
      @d-8664 8 часов назад

      This is wrong you haven't proven that the triangle is a right triangle.

    • @santiagoarosam430
      @santiagoarosam430 5 часов назад

      @@d-8664 Si no fuese triángulo rectángulo, entonces el trazado geométrico propuesto sería imposible. De todas formas, aúnque no veas con claridad esa evidencia, de la figura propuesta y de la hipótesis del triángulo rectángulo se deducen inmediatamente los valores siguientes: Ángulo DCP=θ ; PQ=√5 ; PC=2√5 ; CQ=5 ; PD=2 ; DC=4 ; CD=4 ; QB=3 → Todos esos valores son coherentes con el trazado propuesto y con la hipótesis inicial, lo cual indica que ésta era correcta.
      Un saludo cordial.

  • @giuseppemalaguti435
    @giuseppemalaguti435 День назад

    θ=arctg(1/2)..uso l'equazione arctg(l-2)/l+θ+arctg(l-1)/l=90..svolgo i calcoli risulta l=4..percio x^2=4^2+3^2=25

  • @ritwikgupta3655
    @ritwikgupta3655 День назад

    @vcVartak, unless you first prove

  • @sushmachoudhary2403
    @sushmachoudhary2403 10 часов назад

    I just solved this with mind calculation , just use similarity

  • @Ama-c8m
    @Ama-c8m 20 часов назад

    Cómo la mitad del cuadrado es 2 .este tiene 4 unidades y la hipotenusa del triángulo pequeño resulta de aplicar teorema de Pitágoras que da raíz cuadrada de 5 que es un cateto del triángulo que averigua el valor de x y por lógica el otro cateto pide 4 unidades .Al aplicar la suma de las raíces en su cuadrado da raíz cuadrado de 26 igual a 5 ..más fácil no ?

    • @d-8664
      @d-8664 8 часов назад

      This is wrong you haven't proven that the triangle is a right triangle.

  • @sadettinorhanozturkkkk
    @sadettinorhanozturkkkk 22 часа назад

    cevabı bu kadar uzatıp karmaşıklaştırmaya hiç gerek yok benzer açı kenar kenar benzerliği yakaladığımız 2 üçgen için; küçük üçgende hipotenüsü buluruz (karekök5)kısa kenar kök 5 ise uzun kenar 2 kök 5 olur sonrası tekrardan hipotenüs yapmakta 2kök5+kök5 in karelerini aldığımızda kök 25 buluyoruz sadeleştirdiğimizde X=5 olduğu ortaya çıkıyor

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 20 часов назад

    (2)^2 (1)^2 ={4+1}=5 {90°A+90°B+90°C+90°D}=360°ABCD/5=70.10ABCD 7^10.10 7^5^5.5^5 3^4^2^3^2^3.2^3^2^3 1^2^2^1^1^1^1.1^1^1^3 1^2.1^3 2.3 (ABCD ➖ 3ABCD+2).

  • @wasimahmad-t6c
    @wasimahmad-t6c День назад +1

    5

  • @blogfilmes1134
    @blogfilmes1134 23 часа назад

    Eu fiz pela tanθ

  • @nenetstree914
    @nenetstree914 День назад +1

    5