Can You Solve Without Using Trigonometry?

Поделиться
HTML-код
  • Опубликовано: 28 янв 2025

Комментарии • 32

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب Месяц назад +5

    We extend the line CB to the point D such that CA=CD and

  • @jimlocke9320
    @jimlocke9320 Месяц назад +2

    The 36°-54°-90° right triangle can be constructed inside a regular pentagon, where the long side is half the length of a diagonal and the hypotenuse is a side of the pentagon. The ratio of diagonal to side in a regular pentagon is the Golden Ratio, (1 + √5)/2, but here we have half a diagonal and a full side, so the ratio (long side)/(hypotenuse) is (1 + √5)/4. So we multiply the length of the hypotenuse by this ratio to find that the long side has length X = ((1 + √5)/4)(2) = (1 + √5)/2, as Math Booster also found.

  • @brettgbarnes
    @brettgbarnes Месяц назад

    Interesting demonstration of the special properties of this particular triangle! This solution method only works with the 36-54-90 triangle.

  • @madhabsikder9670
    @madhabsikder9670 Месяц назад +1

    Cos36 = x/2--> x= 2*Cos36--> x=2*.8=1.6
    and your answer x=(sqrt5 +1)/2=(2.23+1)/2= 3.23/2=1.6

  • @quigonkenny
    @quigonkenny Месяц назад

    Mirror ∆ABC about AB. Let the mirrored point C be D. As ∆DBA and ∆ABC are congruent by design, then ∠ADB = ∠BCA = 36°, AD = CA = 2, and DB = BC = x.
    Extend DA to E, such that ∠ACE = 36°. Let EA = a. As ∠EDC = 36° and ∠DCE = 36°+36° = 72°, then ∠CED = 180°-(36°+72°) = 180°-108° = 72°. As ∠CED = ∠DCE = 72°, then ∆EDC is an isosceles triangle and DC = ED = 2+a = 2x.
    As ∠ACE = 36° and ∠CEA = 72°, then ∠EAC = 180°-(36°+72°) = 72°. As ∠CEA = ∠EAC = 72°, then ∆ACE is an isosceles triangle and AC = CE = 2. Additionally, ∆ACE and ∆EDC are similar by angle-angle-angle similarity.
    AC/EA = ED/CE
    2/a = (2+a)/2
    a(2+a) = 4
    a² + 2a - 4 = 0
    a = [-(2)±√((2)²-4(1)(-4))]/2(1)
    a = -1 ± √(4+16)/2
    a = -1 ± √20/2 = -1 ± √5
    a = √5 - 1 | -a = - 1 - √5- ❌ a > 0
    2 + a = 2x
    2 + (√5-1) = 2x
    1 + √5 = 2x
    [ x = (1+√5)/2 = φ ≈ 1.618 units ]

  • @TheAlavini
    @TheAlavini Месяц назад

    The solution is so imaginative; Congrats!

  • @kateknowles8055
    @kateknowles8055 Месяц назад

    Thank you for this challenge . I love the golden ratio. It is the answer to this question. It is also the the limit of F(n+1) / F(n) as n approaches infinity
    where F(n) stands for the Fibonacci series, (and the limit of L(n+1)/ L(n) the Lucas numbers as n approaches infinity.)🌻🐌🐚🐌🐚🐌🌻

  • @raghvendrasingh1289
    @raghvendrasingh1289 Месяц назад +1

    👍 and if we drop perpendicular from P on QC then we can prove that
    sin 18° = 1/PC
    = 1/(√5+1)
    = (√5-1)/4

  • @kateknowles8055
    @kateknowles8055 Месяц назад

    Marking D on AC so that AD = 2-X and DC =X I have an isosceles triangle BDC. The angle at C is 36º and the angles at B and at D must each be 72º.
    This can be copied nine times and tiled ( X to X) to make a regular decagon : BE FGHIJKLM or labelled otherwise (centred at C).
    Now a line through A which is parallel to BD may be drawn to have A at one end and of length BD×2/X. The other end of this line segment (which I am labelling N) meets CB extended.
    NC =2 There is another chance to build a regular decagon centred at C.
    Focussing next on the trapezium ADBN : 10 × [ADBN] = 10 ×[ADB] + 10 ×[ ABN] would be the difference in areas of two regular decagons
    ND bisects AB and is bisected by AB
    In triangle ABC by Pythagoras' theorem AB^2 = 2^2 - X^2
    In triangle DNC " ND^2 = 2^2 - X^2
    Letting P be the common midpoint of AB and ND, congruency gives that angle PDC is 90º. BPDC is cyclic and so angle BPD is 180- 36º, it is 144º and has a vertically opposite angle
    APN, also 144º . (not alowing trigonometry??) I have a trapezium dissected into four equal areas at P.
    Taking two of these from [ ANC] gives an area equalled by adding two of these to [ BDC] It is ½AB×BC.
    Answering the Title Question honestly : Without reading comments or following video, no I cannot. (this is a correct answer!🤔☺)

  • @zawatsky
    @zawatsky Месяц назад

    Если повернуть AC против часовой стрелки на 6º, то получаем уже гораздо более известный и понятный прямоугольный треугольник, со сторонами 1, 2 и √5. Повернув от исходной позиции на 9º по часовой стрелке, тоже имеем известный треугольник, с гипотенузой 2, а значит, двумя сторонами по √2. Итого между ними общий разброс 15º, а х где-то в диапазоне между √2 и √5. Я у себя начертил эскиз, по нему выходит, что этот люфт делится на пять частей по 3º. При этом мы точно знаем основание треугольника, получающегося посередине (37½º=37º 30'). Это полусумма, т. е. среднее арифметическое: (√5+√2)/2. Дальше действуем по принципу: тебе половину и мне половину, твою половину ещё пополам. Т. е. ищем середину между 37,5º и 30º, т. е. 33¾º=33º 45'. Так можно сделать несколько шагов и из этой выборки подсчитать приблизительное значение достаточно точно. Можно также повернуть АС так, чтобы получился египетский треугольник со сторонами 50/25, 40/25 и 30/25, его углы кто не помнит - всегда можно подсмотреть в Википедии. Один из них близко, очень близко: ≈ 36,87°. Берём больший катет, х≈40/25=8/5=1³/₅.

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب Месяц назад +1

    We have cos(3*72)=cos(2*72) and from it 4cos³(72)-3cos(72)=2cos²(72)-1 and from it cos72 is a solution to the equation 4x³-2x²-3x+1=0 and this is equivalent to (x-1)(4x²+2x-1)=0 and from it the acceptable solution is (-1+√5)/4=cos(72) so cos 36=√((1+cos72)/2)=√(6+2√5)/4=(1+√5)/4 and from it x=2cos36=(1+√5)/2

    • @alanclarke4646
      @alanclarke4646 Месяц назад

      WITHOUT USING TRIGONOMETRY!!!

    • @ناصريناصر-س4ب
      @ناصريناصر-س4ب Месяц назад

      ​@@alanclarke4646Yes, I did not pay attention to it, but I suggested another solution using a method found in the comments using geometry.

  • @murdock5537
    @murdock5537 Месяц назад

    θ = 36°; ∆ CQP → CP = PB + CB = x + x = 2x = PQ = PA + QA = 2 + (2x - 2) > 0; AP = AC = QC = 2
    BCA = APB = ACQ = θ → 1/(x - 1) = x → x = (1/2)(√5 + 1) → cos⁡(θ) = (1/4)(√5 + 1)

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Месяц назад

    {x+x ➖ }+{ 2)^2={x^2+4}=4x^2{36°A+36°B+90°C}={162°ABC+18°D}=180°ABCD/4x^2=40.20ABCD 4.2 2^2.2 1^1.2 1.2 (ABCD ➖ 2ABCD+1).

  • @cyruschang1904
    @cyruschang1904 Месяц назад

    2cos(π/5)

  • @فاطمهخسروی-ق6ن
    @فاطمهخسروی-ق6ن Месяц назад

    Je suis français mais j'habite en Iran. La réponse à cette question est très simple à résoudre en Iran.

  • @CristinaMaria-n5p
    @CristinaMaria-n5p 26 дней назад

    2²=X²+6²
    4=X²+36
    X²=36-4
    X²=32
    X²=✓32
    X=2✓2

  • @heribertoayalareyes3628
    @heribertoayalareyes3628 Месяц назад

    Respuesta:X = Fi.

  • @phungcanhngo
    @phungcanhngo Месяц назад

    How to draw triangle ABC?

  • @Manikandan-kx8uv
    @Manikandan-kx8uv Месяц назад

    I find x is at the bottom of triangle 😮

  • @ritwikgupta3655
    @ritwikgupta3655 Месяц назад

    Awesome!

  • @UlisesElMagnanimo
    @UlisesElMagnanimo Месяц назад

    Si, pregunta si puedo resolverlo sin usar trigonometría, no como lo resuelven, la respuesta correcta es si

  • @rosembergtrujillo777
    @rosembergtrujillo777 Месяц назад

    Pitagoras

  • @wasimahmad-t6c
    @wasimahmad-t6c Месяц назад

    X=1.6654

  • @AlexanderHD-dz6lv
    @AlexanderHD-dz6lv Месяц назад

    X = 1,02 ....90 X = 108 ....X = 108/90..X = 1,02. 😂😂😂😂😂😂😂

  • @CristinaMaria-n5p
    @CristinaMaria-n5p 26 дней назад

    Primeira Secretária
    Segunda Secretária

  • @kidas0808
    @kidas0808 21 день назад

    cos(36)=x/2; x=2*cos(36)=2*0,809=2*1/4(5^^(1/2)+1); x=1/2(5^^(1/2)+1)=0.8090169943795

  • @ina-j2p
    @ina-j2p 22 дня назад

    黄金比だからx=(1+√5)/2≒1.618

  • @nztraders6536
    @nztraders6536 23 часа назад

    Before, copying the picture: And,
    After, copying the picture: Now.🫥