Russian Math Olympiad Problem | A Very Nice Geometry Challenge | 2 Different Methods

Поделиться
HTML-код
  • Опубликовано: 29 янв 2025

Комментарии • 31

  • @markp7262
    @markp7262 9 месяцев назад

    I used the law of cosines method, but I realized that

  • @davidchung1697
    @davidchung1697 9 месяцев назад +1

    R sin((PI - 2X)/2) = 7/2; and R sin(x/2) = 15/2, from the construction above. Then using trig identities, one gets 2R^2 - 7R - 225 = 0.

  • @AbouTaim-Lille
    @AbouTaim-Lille 9 месяцев назад +1

    You have: 2 arc sin 15/2r + arc sin 7/2r = π/2. Just solve it using trigonemtric indetities.

    • @alexandermorozov2248
      @alexandermorozov2248 9 месяцев назад

      Хотел написать примерно то же самое 👍

  • @guyjinb
    @guyjinb 10 месяцев назад +3

    Another solution without using trigonometry:
    Locate center of semicircle, O.
    Construct AC and BO, intersecting at E.
    BO bisects angle AOC, and AO=BO=OC, so triangles AOB and BOC are congruent.
    AC is perpendicular to BO, so angle AEO and angle ACD are both right angles.
    Angle EAO = Angle CAD, so triangle AEO is similar to triangle ACD.
    Since AD = 2AO, triangle ACD has sides twice as long as those of triangle AEO.
    OE = half of CD = 7/2
    BE = R - 7/2
    Right triangles ABE and AOE share side AE.
    By the Pythagorean theorem, AE = 15^2 - (R-7/2)^2
    By the Pythagorean theorem, AE = R^2 - (7/2)^2
    15^2 - (R-7/2)^2 = R^2 - (7/2)^2
    Simplifying gives us 2R^2 -7R -225 = 0
    Solving the quadratic equation gives us R = 25/2 or -9
    R must be positive, so R = 25/2

    • @Irtsak
      @Irtsak 10 месяцев назад +1

      Great solution ........ 👍

  • @giuseppemalaguti435
    @giuseppemalaguti435 10 месяцев назад +1

    Posto α=ABC. Teorema del coseno 15^2+15^2-2*15*15*cosα=4r^2+7^2-2*7*2rcos(180-α)=4r^2-7^2(quest'ultima equazione perché ACD è rettangolo)..dalle 2 equazioni risulta r=12,5..cosα=-7/25..α=106,26

  • @ДмитрийИвашкевич-я8т
    @ДмитрийИвашкевич-я8т 10 месяцев назад +2

    • @jimlocke9320
      @jimlocke9320 10 месяцев назад

      This is very clever and excellent! To fill in and make it easier to follow: DB has been constructed.

    • @lijiancz2066
      @lijiancz2066 9 месяцев назад

      excellent!

    • @skwest
      @skwest 9 месяцев назад

      ​@@jimlocke9320
      Thanks for filling in those details.
      Yes, very clever solution.

    • @otakurocklee
      @otakurocklee Месяц назад

      This is very cool! I would never have seen this.

  • @skwest
    @skwest 9 месяцев назад

    I'm a couple of weeks late, but... here goes:
    1. Complete the circle. Let O represent its center. Draw radius BO, extending to the other side of the completed circle to create diameter BE (passing through O, of course.)
    2. Draw AC, intersecting BE at F. By 'triangle inscribed in semicircle is a right triangle', establish that △ACD is a right triangle.
    3. AD is a diameter of the circle/semicircle, therefore AD = 2r. Also, CD = 7, so, by Pythagoras:
    AC² = (2r)² - 7². This can be reduced to:
    AC = 2 • √(r² - (7/2)²).
    4. Since AB = BC = 15, △ABC is isosceles, with base AC. Given this fact, we still need to establish that BO (actually, BOE) is the perpendicular bisector of AC.
    We can do that by drawing one additional radius, OC. This will establish the congruency of △ABO and△CBO (SSS). Once we have that we can easily get that AF = CF along with the perpendicularity of BO and AC.
    5. The last thing we need is the relationship between the chords AC (AFC) and BE (BFE), intersecting at F.
    That relationship is:
    AF x FC = BF x FE
    Substituting (from #3) and assigning BF = a, we get:
    √(r² - (7/2)²) • √(r² - (7/2)²) = (a) • (2r - a)
    Simplifying this (I'll show a few intermediate steps) to get an equation in 2 variables, we first get:
    r² - 49/4 = 2ar - a², and then,
    r² - 2ar + a² = 49/4, and,
    (r - a)² = (7/2)², or,
    a = r - 7/2
    6. We can get a second such equation (in a and r) by applying Pythagoras to △AFB:
    a² + √(r² - (7/2)²)² = 15², simplifying to,
    a² + r² - 49/4 = 225, or,
    a² + r² = 225 + 49/4 = 949/4, i.e.,
    a² + r² = 949/4
    7. Substituting #5 (a = r - 7/2), we get:
    (r - 7/2)² + r² = 949/4, or,
    2r² - 7r + 49/4 = 949/4, then,
    2r² - 7r - 900/4 = 0
    8. Employing the quadratic formula yields:
    r = (7 ± 43)/4, or,
    r = 25/2
    ??
    Now to watch the video to see if I got it right.
    Cheers!

    • @skwest
      @skwest 9 месяцев назад

      Got it!
      Forgot about the cyclic quadrilateral theorem...
      Oh, well. That makes my solution a 3rd method.
      Thanks for the challenge!

  • @changryu8128
    @changryu8128 19 дней назад

    There should be a minimum value of the R. R >= (1/3) x (15 + 15 + 7). R >= 12.333333... by Chang's theory. Chang's theory: let length AB = a, BC = b, CD = c. R >= (1/3) x (a + b + c).
    a + b + c = 2R x (sin α/2 + sin ß/2 + sin Γ/2) where angle α = angle AOB, ... Maximum of (sin α/2 + sin ß/2 + sin Γ/2) = 3/2. So, 2R >= 2/3

  • @francois8422
    @francois8422 8 месяцев назад

  • @toninhorosa4849
    @toninhorosa4849 5 месяцев назад

    I solved using Pythagoras and similar ∆s.
    First I drew a line from point A to point C, forming the right ∆ ACD.
    AD = 2R
    CD = 7
    AC = X
    (2R)^2 = 7^2 + X^2
    4R^2 = 49 + X^2
    X^2 = 4R^2 - 49 (I)
    Then I joined point "B" to point "O". Line BO intersected line AC at point "P".
    The ∆APO is similar ∆ACD
    Then:
    AD/CD = AO/PO
    2R/7 = R/3,5
    PO = 3,5 or 7/2
    Now:
    ∆ ABC is isoceles:
    AB = BC = 15
    AC = X
    AP = X/2 and PC = X/2
    ∆ABP is right triangle
    BP = R - PO = (R - 3,5)
    AB^2 = AP^2 + BP^2
    15^2 = (X/2)^2 + (R - 7/2)^2
    225 =R^2 -7R+49/4 +(X^2)/4
    (× 4)
    900 = 4R^2 -28R + 49 + X^2
    X^2 = - 4R2 + 28R +851 (II)
    Equation: I = II
    4R2 - 49 = -4R^2+28R+851
    8R^2 - 28R - 900 = 0 (÷4)
    2R^2 - 7R - 225 = 0
    R = (7+-√(49+1800))/2*2
    R = (7 +- 43)/4
    R1 = (7+43)/4 = 50/4 = 12,5
    Accepted
    R2 = (7-43)/4 = - 36/4 = - 9
    Rejected
    Correcto answer :
    R = 12,5

  • @jimlocke9320
    @jimlocke9320 10 месяцев назад +1

    Drop a perpendicular from O to AB and label the intersection E.

  • @alanx4121
    @alanx4121 10 месяцев назад

    awesome
    Those answers that aren't possible, do they get meaning in the complex or another domain?

  • @Irtsak
    @Irtsak 10 месяцев назад

    A shortcut in Math’s booster excellent second solution.
    Ptolemy's theorem:
    For a cyclic quadrilateral (that is, a quadrilateral inscribed in a circle), the product of the diagonals equals the sum of the products of the opposite sides.
    AC BD = AB CD + BC AD => AC BD = 15•7 + 15• d ( d = diameter )
    => AC BD = 15(d+7)
    => AC²⋅BD²=15 ² (d+7)² => (d²-7² )(d²-15² )=15² (d+7)²
    => (d+7)(d-7)⋅(d²-15² )=15 ²(d+7)²
    => (d-7)⋅(d²-15² )=15² (d+7)
    => d³ -15² d - 7d²+7⋅15²=15²⋅d+7⋅15²
    => d³ - 7d² - 2•15² d =0
    => d² - 7d - 450 = 0 cause d>0
    => d = 25 or d = -18 ( is rejected )
    So R=d/2 => R=25
    Good morning from Greece .

  • @anime_GHub
    @anime_GHub 10 месяцев назад +1

    Hello. I find interesting geometry problem:
    Line l touches the circumcircle of triangle ABC at point A. Points D and E
    are such that CD and BE are perpendicular to l, and angles DAC and EAB are right angles. Prove that
    BD and CE intersect at the height of triangle ABC from vertex A.
    Please, can you solve it?)

  • @bennyhsiao8435
    @bennyhsiao8435 5 месяцев назад

    15/sin

  • @mauriziofenderico8348
    @mauriziofenderico8348 10 месяцев назад

    Excellent step-by-step explanation....🙂

    • @henridubost1281
      @henridubost1281 9 месяцев назад

      15/2 = R sin (a/2)
      7/2 = R sin (b/2)
      2a + b = pi
      b = pi - 2a
      7/2 = R sin ((pi -2a)/2) = R cos a
      7/2 = R (1 - 2 sin ^ 2 (a/2))
      7/2 = R (1 - 2 (15/(2R)^2)
      Équation du 2nd degré en R, etc.

  • @pennstatefan
    @pennstatefan 9 месяцев назад

    The radius of the semi circle is r = 22.33

  • @changryu8128
    @changryu8128 19 дней назад

    Math Booster, please make a comment my theory below. And let me know whether it is correct or not.

  • @Agejustanumber46
    @Agejustanumber46 Месяц назад

    Very well

  • @Dinhnguyen-km6zd
    @Dinhnguyen-km6zd 3 месяца назад

    -cos2x=2cos^2-1