Hungary Math Olympiad Problem | Best Math Olympiad Problems | Geometry Problem

Поделиться
HTML-код
  • Опубликовано: 23 ноя 2024

Комментарии • 90

  • @joseosoriofigueiredo6388
    @joseosoriofigueiredo6388 11 месяцев назад +57

    The result does not depend on the value of the circle radius.
    For r = 0, we have:
    AO²+OC² = BO²+DO²
    33²+r²+x²+r²=85²+r²+35²+r²
    33²+x²=85²+35²
    José Osorio from Brazil.

    • @johnspathonis1078
      @johnspathonis1078 11 месяцев назад +5

      I agree Jose. Since the radius of the circle was not given therefore the problem should work with all values of R. It this is not the case the problem is indeterminate.

    • @jorgz.41
      @jorgz.41 10 месяцев назад

      Brillant solution !!

    • @kelvin-rj9yr
      @kelvin-rj9yr 9 месяцев назад +1

      Green formula + Pink formula ---> AO¢2 +CO¢2 = BO¢2 +DO¢2

    • @kelvin-rj9yr
      @kelvin-rj9yr 9 месяцев назад

      I think that the most key part for me is to think more, and then to get pink formula imformation. Good thought!

    • @viscourtroy
      @viscourtroy 9 месяцев назад

      😮😮

  • @sergiykanilo9848
    @sergiykanilo9848 11 месяцев назад +7

    DA =a + b, AB =c + d (separation at the center of the circle), r - radius of the circle
    #1 a^2 + c^2 - r^2 = 35^2
    #2 b^2 + c^2 - r^2 = 33^2
    #3 b^2 + d^2 - r^2 = 85^2
    a^2 + d^2 - r^2 = #1 - #2 + #3 = x^2
    => x =sqrt( 35^2-33^2+85^2 )

    • @gojo8063
      @gojo8063 8 месяцев назад +1

      Please explain with diagram

    • @DandoPorsaco-ho1zs
      @DandoPorsaco-ho1zs 8 месяцев назад +2

      Most efficient method so far!

    • @DandoPorsaco-ho1zs
      @DandoPorsaco-ho1zs 8 месяцев назад

      @@gojo8063In his derivation, a and b are the vertical distances from the bottom to the centre of the circle, and from the centre to the top. c and d are the horizontal distances from the left of the rectangle to the centre, and from the centre to the right.
      Each of his equations has triangles involving horizontal, vertical and diagonals on the left (four quadrants), and tangents, radii and diagonals on the right. Draw everything on a diagram and you'll see.

  • @pollywanda
    @pollywanda 10 месяцев назад +54

    Find X? --- X is in the lower right in the diagram. Easy!

    • @marcind-ec1de
      @marcind-ec1de 10 месяцев назад +5

      Sure. That was easy ;-)

    • @killeryt5530
      @killeryt5530 10 месяцев назад +7

      X=? Not to find where is X 😅

    • @RakeshKumar-h1c3p
      @RakeshKumar-h1c3p 8 месяцев назад +1

      wow what a imaginatiin plz reply😂😂

    • @ethiopiantikdem8485
      @ethiopiantikdem8485 8 месяцев назад +1

      Thank u

    • @olivier7660
      @olivier7660 4 месяца назад

      Sure you never went to school😅​@informatikasmkmusanganjuk8540

  • @marioalb9726
    @marioalb9726 11 месяцев назад +11

    R=0
    British Flag theorem:
    x²+33²=35²+85²
    x= 85,796 cm ( Solved √ )

    • @kevinmorgan2317
      @kevinmorgan2317 9 месяцев назад +1

      British Flag Theorem is certainly used here (or derived firstly). That would use the four corners joined to the circle centre. But you then have to take the additional step of showing the BFT also applies to the tangent lengths.

    • @marioalb9726
      @marioalb9726 9 месяцев назад +3

      ​​​​​​@@kevinmorgan2317
      This exercise is requesting for X value, not for any demonstration.
      Besides of that, Radius of circle is not given, so it induce us to think that the result doesn't depend on that radius.
      And yes, the BFT theorem also applies to the tangent lengths.
      Anybody wants to
      demonstrate it??? despite is not required.
      This video obtained the same result, using a different method, so this video is that demonstration !!!

  • @zdrastvutye
    @zdrastvutye 10 месяцев назад +3

    this is the 4th time i have written a code for this but yet
    i don't know why some numbers for r=... won't lead to a solution:
    10 dim x(3),y(3):r=20:l1=35:l3=85:l4=33:sw=.1:xm=r*1.3+sw:goto 40
    20 ym=sqr(l1^2+r^2-xm^2):lh=sqr(l4^2+r^2-xm^2)+ym
    30 lb=sqr(l3^2+r^2-(ym-lh)^2)+xm:return
    40 gosub 20
    50 if lh0 then 130
    150 xs1=(xs11+xs12)/2:gosub 100:if dg1*dg>0 then xs11=xs1 else xs12=xs1
    160 if abs(dg)>1E-10 then 150:rem den thalessatz anwenden
    170 xmt=(xm+lb)/2:ymt=ym/2:rt=sqr((xm-xmt)^2+(ym-ymt)^2)
    180 xs2=xm-r:goto 220
    190 ys2=ym-sqr(r^2-(xs2-xm)^2):l2=sqr((xs2-lb)^2+ys2^2)
    200 dgu1=(xs2-xmt)^2/l1^2:dgu2=(ys2-ymt)^2/l1^2:dgu3=rt^2/l1^2:
    210 dg=dgu1+dgu2-dgu3: return
    220 gosub 190
    230 xs21=xs2:dg1=dg:xs2=xs2+sw:if xs2>10*lb then stop
    240 xs22=xs2:gosub 190:if dg1*dg>0 then 230
    250 xs2=(xs21+xs22)/2:gosub 190:if dg1*dg>0 then xs21=xs2 else xs22=xs2
    260 if abs(dg)>1E-10 then 250 else print "der gesuchte abstand=";l2
    270 xs3=xm:goto 310
    280 disy=l3^2-(xs3-lb)^2:if disy0 then 330
    350 xs3=(xs31+xs32)/2:gosub 280:if dg1*dg>0 then xs31=xs3 else xs32=xs3
    360 if abs(dg)>1E-10 then 350
    370 xmt=xm/2:ymt=(lh+ym)/2: xs4=xm-r:rt=sqr(xmt^2+(ymt-lh)^2):goto 410
    380 disy=rt^2-(xs4-xmt)^2 :if disy0 then 430
    450 xs4=(xs41+xs42)/2:gosub 380:if dg1*dg>0 then xs41=xs4 else xs42=xs4
    460 if abs(dg)>1E-10 then 450
    470 x(0)=0:y(0)=0:x(1)=lb:y(1)=0:x(2)=x(1):y(2)=lh:x(3)=0:y(3)=y(2):mass=1E3/(l1+l2+l3+l4)*4
    480 goto 500
    490 xbu=x*mass:ybu=y*mass:return
    500 xba=0:yba=0:for a=1 to 4:ia=a:if ia=4 then ia=0
    510 x=x(ia):y=y(ia):gosub 490:xbn=xbu:ybn=ybu:goto 530
    520 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return
    530 gosub 520:next a:gcol 4:x=xm:y=ym:gosub 490:circle xbu,ybu,r*mass :gcol 8
    540 xba=0:yba=0:x=xs1:y=ys1:gosub 490:xbn=xbu:ybn=ybu:gosub 520
    550 gcol7:x=lb:y=0:gosub 490:xba=xbu:yba=ybu:x=xs2:y=ys2:gosub 490:xbn=xbu:ybn=ybu:gosub 520
    560 gcol8: x=lb:y=lh:gosub 490:xba=xbu:yba=ybu:x=xs3:y=ys3:gosub 490:xbn=xbu:ybn=ybu:gosub 520
    570 x=0:y=lh:gosub 490:xba=xbu:yba=ybu:x=xs4:y=ys4:gosub 490:xbn=xbu:ybn=ybu:gosub 520
    108.666398% 59.142812
    xm=26.1 ym=30.7211653
    der gesuchte abstand=85.7962703
    >
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @iamv_ince_nt
    @iamv_ince_nt 8 месяцев назад +1

    It has a shortcut on that given any length
    Suppose you has a rectangle ABCD or square with circle inside givem that the origin is at any point inside the triangle with unknown radius. Then each verteces of the rectangle was connected with a of tangency thru the circle. Given that there was a missing value of line C (from the vertex of the triangle to the tabgent point of the circle.
    The solution is always:
    A²+C²=B²+D²
    Example
    A=9
    B=x
    C=4
    D=1
    So using the formula
    B= 4 times sqrt of 6
    Is this right? Kindly validate please

  • @RameshMendis-j5h
    @RameshMendis-j5h 2 месяца назад

    I appreciate your teaching style
    Love from 🇱🇰

  • @richardleveson6467
    @richardleveson6467 9 месяцев назад +7

    I really enjoyed this - and so many of your other puzzle problems. You have a special knack for choosing interesting challenges for your audience (like this one!) and your solutions are ingenious.: we are all lucky to have found you here. Thank you for brightening my day!

  • @marcind-ec1de
    @marcind-ec1de 10 месяцев назад +4

    I think I need subtitles. By the way, what kind of genius must you be to solve this?! Maximum respect from me.

  • @tomc.3987
    @tomc.3987 17 дней назад

    This is another great one. Heck. It was worth it just to learn the 5² rule.

  • @caperider1160
    @caperider1160 11 дней назад

    One can quickly see that this problem will have the same solution regardless of the size of the circle.

  • @azamatbezhan1653
    @azamatbezhan1653 10 месяцев назад +1

    How do you think, what country has best geometry scholary. Maybe Hungary , Austria

  • @notapplicable531
    @notapplicable531 8 месяцев назад +1

    Leaving your fraction with the square root of 2 is not solving this problem.

  • @isabellinianperuvianlands6541
    @isabellinianperuvianlands6541 10 месяцев назад +4

    Practically Marlen Theorem

  • @DriverFirst-547
    @DriverFirst-547 10 месяцев назад +4

    оце я розумію "завдання". 👍

  • @howardaltman7212
    @howardaltman7212 11 месяцев назад +3

    Nice application and derivation of the British Flag Theorem.

  • @useptaufik3994
    @useptaufik3994 7 месяцев назад

    I think we can also use trigonometric ratio
    Ex: x/ sin × : y /sin y
    😊

    • @useptaufik3994
      @useptaufik3994 7 месяцев назад

      But, the operation is not as easy as we think. We need a trigononetric table ...but maybe it will be faster..

    • @useptaufik3994
      @useptaufik3994 7 месяцев назад

      Ups sorry...I mean algorithms table

  • @sabriath
    @sabriath 10 месяцев назад +2

    so 85....basically....got it in like 2 seconds.

  • @dziabadzekson6627
    @dziabadzekson6627 10 месяцев назад +4

    Greetings from Poland

  • @peterminea3949
    @peterminea3949 8 месяцев назад +2

    That is almost 85.8!

  • @SGuerra
    @SGuerra 2 месяца назад

    Que questão bonita. Vale que: AO^2 + CO^2 = BO^2 + DO^2.

  • @CanalMiTube
    @CanalMiTube 11 месяцев назад +1

    This problem is very very beautiful.

  • @sampurna8a184
    @sampurna8a184 8 месяцев назад +1

    Darimana kamu bisa mendapatkan semua soal ini 🤔

  • @jeanpierrehocquet9962
    @jeanpierrehocquet9962 4 месяца назад

    Mes félicitations pour ce travail remarquable

  • @mohamadsajaudin7340
    @mohamadsajaudin7340 10 месяцев назад +1

    Bhi 16minat mea q hal hoga short turm mea bato

  • @math_qz_2
    @math_qz_2 11 месяцев назад +2

    Thanks for your job

  • @huseyinyigitemekci-fm8vf
    @huseyinyigitemekci-fm8vf 10 месяцев назад +2

    So similar to Turkey NMO 1st Round

  • @josip.harasic
    @josip.harasic 7 месяцев назад

    13:10 23^2 (?)

  • @richardleveson6467
    @richardleveson6467 10 месяцев назад +1

    Bravo! Well done.

  • @kennethkan3252
    @kennethkan3252 Месяц назад

    35+85=33+x
    x=87

  • @navvabrahmani1280
    @navvabrahmani1280 9 месяцев назад +1

    شما استاد بزرگی در ریاضی هستی❤

  • @padraiggluck2980
    @padraiggluck2980 4 месяца назад +1

    Thanks!

    • @MathBooster
      @MathBooster  4 месяца назад +1

      Thank you for supporting the channel. It means a lot for me 😊

  • @曾嘉治
    @曾嘉治 10 месяцев назад +1

    It's the best program.

  • @comdo777
    @comdo777 10 месяцев назад +1

    asnwer=95 isit

  • @CuriousFocker
    @CuriousFocker 10 месяцев назад +1

    I took one look at this and realized immediately the answer must be 87. No matter the radius of the circle or where it is placed within the rectangle, the lengths of the corners A and C tangents will always equal the lengths of the corners B and D tangents.
    A + C = B + D 85 + 35 = 120 thus:
    120 - 33 = 87 being the length of X (the tangent of corner C)
    The overly complicated methodology of Math Booster gave the incorrect answer of √7361 which is 85.79627032
    Squaring the tangent lengths will not give the correct answer, that is of use only if you are looking for the length of each corner ABCD to the centre of the circle, e.g the hypotenuse of the right angle triangles in the video, but you would also need to know the radius of the circle.

    • @idoc-11
      @idoc-11 10 месяцев назад

      you are wrong though not him, his answer is correct, you got it wrong by saying A + C = B + D while in fact the right thing to say would be A^2 + C^2 = B^2 + D^2 which is just the british flag theorem if you select the radius of the circle to be 0, since the radius can be any number, 0 is also a valid choice.

    • @NerdFuture
      @NerdFuture 9 месяцев назад

      Btw, sqrt(7361) is about 85.796. It makes sense that the difference between the two long ones is less than the difference of the two short ones.

  • @user-gn4mq5cs6e
    @user-gn4mq5cs6e 6 месяцев назад

    Awesome

  • @MsRafaelRGO
    @MsRafaelRGO 9 месяцев назад +1

    ahm....from the drawn you are assuming that u can make a 90 degree angle line to the center of the circle...but that isn't "evident" on the draw, but i guess it's not possible to solve if that is not the case.

    • @NerdFuture
      @NerdFuture 9 месяцев назад

      The problem says they're *tangent* lines to the circle. That means each one is, er, flat against a point on the circle and at right angles to the radius at that point.

  • @jayeshkumar3861
    @jayeshkumar3861 11 месяцев назад +1

    Great

  • @fisicamatematicasprofewilliam
    @fisicamatematicasprofewilliam 9 месяцев назад +1

    Gran problema de olimpiadas excelente like

  • @eagle32349
    @eagle32349 10 месяцев назад +2

    who's hungry

  • @Fubao996
    @Fubao996 9 месяцев назад +2

    哈哈 听印度朋友讲数学

  • @user-czxs-fdd87H-zzs
    @user-czxs-fdd87H-zzs 9 месяцев назад

    87

  • @kapi-j6n
    @kapi-j6n 2 месяца назад

    Hay thật

  • @matemaniaindonesia3635
    @matemaniaindonesia3635 11 месяцев назад +2

    i like

  • @misterin2
    @misterin2 11 месяцев назад +1

    CLAP CLAP CLAP !

  • @AnisYousuf-w8u
    @AnisYousuf-w8u 10 месяцев назад

    Seramalatuhgn enkuwan yanten x lifelglh qerto righthnm alfelg deffar azza eski leqeqegnna braseh zabbiya bicha nurrr ynenen x ante aydelehm mitnegregn kante shi etf ymibeltu ngrewgnalna begeza ejh atqlel bayhon yanten x let me tell you yante x yaahya sega alga silut amed ytebalew is best fit for you ok hule khusr ywurre tilq yelewm ytebalew haq new tilq millionair bileh litakebrew sitl bymnderu ltelkasha were endahyaw sega silkesekes setagegnew yane new ekkhkhkjjhkhkhkhjgeeeey miyasegnhh ene badaf endashagn tefeqdolnal ekhkjkjkhkhk allah zerzuryahn ezaaae allah yargewna ameen😮😮😮

  • @王源祥-r1d
    @王源祥-r1d 9 месяцев назад +1

    眼看了,但????????????/~~!!@##$$%%

  • @MottiShneor
    @MottiShneor 8 месяцев назад

    Just a little too tedious, along with the not-so-easy-on-the-ear English pronunciation - the video could be almost half its length without losing everything, and not every note written must also be narrated.
    The solution is nice and beautiful - but I think you could also give 10-20 seconds before solving, on the way you looked at the problem, and how you attacked it, and show the viewers your "war plan", not just the technical details narrated so indifferently - that one KNOWS you had the solution complete to start with. Give it some life! let children not only see how you solve, but develop an appetite for STRUGGLING with such questions.
    Thank you anyway.

  • @mikeellery9095
    @mikeellery9095 10 месяцев назад

    Why? I don't care!

  • @zdrastvutye
    @zdrastvutye 2 дня назад

    run the following in bbcbasic and change the number for "r=" in line 20:
    10 print "brain station end result will shock you":dim x(1,3),y(1,3)
    20 l1=33:l3=85:l4=35:r=25:la=60:sw=la/47:sw=2*pi/59:print la:rem @zoom%=1.4*@zoom%
    30 s1=sqr(l1^2+r^2):s3=sqr(l3^2+r^2):s4=sqr(l4^2+r^2):print s1,s3,s4:goto 50
    40 lhu=(d1^2-d2^2+d3^2)/2/d3:hu=sqr(d1^2-lhu^2):return
    50 d1=s1:d2=s4:d3=la:gosub 40:xm=hu:print "xm=";xm:disy=r*r+l1^2-xm^2:if disy0 then w1=w else w2=w
    180 if abs(dw)>1E-10 then 170 else return
    230 w=sw:xu=0:yu=0:gosub 110:x(1,0)=xs:y(1,0)=ys:w=w+sw:xu=lb:gosub 110:x(1,1)=xs:y(1,1)=ys
    240 w=w+sw:yu=la:gosub 110:x(1,2)=xs:y(1,2)=ys:w=w+sw:xu=0:gosub 110:x(1,3)=xs:y(1,3)=ys
    250 x(0,0)=0:y(0,0)=0:x(0,1)=lb:y(0,1)=0:x(0,2)=lb:y(0,2)=la:x(0,3)=0:y(0,3)=la
    260 xmin=0:xmax=lb:ymin=xm-r:ymax=xm+r
    270 masx=1200/lb:masy=850/la:if masx

  • @CodeMathsPhysics
    @CodeMathsPhysics 8 месяцев назад +2

    87

  • @cogitur
    @cogitur 7 месяцев назад +1

    87