China Math Olympiad | A Very Nice Geometry Problem | 2 Different Methods

Поделиться
HTML-код
  • Опубликовано: 27 ноя 2024

Комментарии • 66

  • @wuchinren
    @wuchinren 4 месяца назад +8

    Let A(0,0), then B(6,0), C(6,-13), D(0,-18)
    O is the centre of the circle, then O(k,-13/2)
    OC=OD
    (k-6)^2+(13/2)^2=k^2+(23/2)^2
    k=-9/2
    radius=OC=sqrt((-9/2-6)^2+(13/2)^2)=sqrt(610)/2

  • @daakudaddy5453
    @daakudaddy5453 4 месяца назад +9

    15:04 Once you've found PA, you can you can directly find PC using Pythagoras theorem (PBC is a right angled triangle). PC is the diameter as it projects a right angle on the circumference at B. PC /2 is the radius.

  • @franciscook5819
    @franciscook5819 4 месяца назад +1

    I extended the 18 line to meet the circle, giving a line length 23 (symmetry). I constructed the perpendicular bisector of the 13 chord (which must pass through the centre of the circle and bisect the line length 23).
    If left intersect of perp to line 18 or 23 is "a" and from there to right intersect is "b" then we have two equations in a,b using the two chords length 23 and 13:
    a.b=23²/4 and (a+6)(b-6)=13²/4 which can be solved by substituting for b in the second eqn using the first eqn.
    Then a+b=2r so r=(a+b)/2

  • @MarieAnne.
    @MarieAnne. 3 месяца назад

    Start off as you did in method 2 up to finding lengths of chords (14:58).
    At this point, draw perpendicular from O to BP at point Q. Quadrilateral OQBN is then a rectangle with
    OQ = BN = 13/2 (since ON is perpendicular to BC, it bisects chord BC)
    ON = BQ = 21/2 (since OQ is perpendicular to BP, it bisects chord BP)
    Diameter of rectangle = OB = r
    OB² = OQ² + BQ²
    r² = (13/2)² + (21/2)² = 169/4 + 441/4 = 610/4
    r = (√610)/2

  • @henrilaporte7599
    @henrilaporte7599 4 месяца назад +2

    Center at origin and B = (x,y) =>
    x^^2 + y^^2 = r^^2
    (x-6)^2 + (y-18)^2 = r^2 and
    x^2 + (y-13)^2 = r^2. Subtract the first to the 2 others and we get 2 linear equations with x and y. Solving gives x = 21/2 and y = 13/2 and this gives r.

  • @cakgun11
    @cakgun11 3 месяца назад +8

    You found the area of the triangle BCD wrong as 39. Hight of that triagle cannot be 6

    • @fullblast2879
      @fullblast2879 2 месяца назад

      it is 39 man.just analyze,if u cant,then use software

    • @sert-rm4ld
      @sert-rm4ld 2 месяца назад

      Height of this triangle is outside the triangle, so it is 6. You can also use Heron's formula to compute area and you will get 39.

  • @lusalalusala2966
    @lusalalusala2966 4 месяца назад +7

    Another way to do it is to draw the segment lines from O to D and B which are the radius of the circle. name x the distance from the center O to M. We consider the right triangles ONB and OMD. Observe that the length of the side BN is 13/2 and the length of MD is 18-13/2=23/2. Now use Pythagoras theorem for both triangle to write: R^2=(x+6)^2+(13/2)^2 and R^2=x^2+(23/2)^2. From this point no more geometry, now only algebra. It follows that (x+6)^2+(13/2)^2=x^2+(23/2)^2. This equation simplifies itself into 12x-54=0 or x=9/2. Therefore, R^2=(9/2)^2+(23/2)^2=81/4+529/4=610/4. Finally, R=sqrt(610)/2.

  • @juanalfaro7522
    @juanalfaro7522 4 месяца назад +1

    Extending BA to the left side of the circumference and a parallel chord from C also to the left circumference, we see there are 5 units below 13 units in the extended AD chord is 23 units, and the extended chord of AB is 21 units long. Center of the circle is at (21/2, 23/2) = (10.5, 11.5). Now R^2 - (11.5) ^2 + (10.5 - 6) ^2 = 11.5^2 + 4.5^2 = [23^2+9^2]/4 = (529+81)/4 = 610/4 -->
    R=sqrt (610) /2.

  • @jiangchuYT
    @jiangchuYT 4 месяца назад

    Let D=(0,0), then C=(6,5), B= (6,18)
    Let O be the center. Since the horizontal line from passing O bisects BC, we know O=(x, 11.5)
    Let M be the midpoint of C and D, we know M=(3, 2.5)
    Since OM is perpendicular to CD, we have (x-3,9) inner product with (6, 5)=0
    6x-18+45 = 0, hence x=-4.5
    Therefore, the radius r=\sqrt{(-4.5)^2+11.5^2}=(1/2)\sqrt{9^2+23^2}=sqrt{610}/2

  • @wusindy8461
    @wusindy8461 3 месяца назад

    延长BA 交于○上F,连接FC ,得到方程如下:设AF为X,直径为D ,FD为Y
    (X+6)²+13²=D²
    Y²=D²+(√61)²
    x²+18²=Y²
    计算得到X=15,代入 得到D为√610,R等1/2*√610

  • @la1260
    @la1260 2 месяца назад

    r is the radius of the BCD triangle's circumcircle: r=abc/4T[BCD](triangle)
    a=BC=13
    b=BD=SQRT(AB^2+AD^2)=18,9737
    c=CD=SQRT(CE^2+DE^2)=7,8103
    T[BCD](triangle)= T[ABCD](trapezoid)-T[ABD](triangle)
    T[ABCD](trapezoid)= (AD+BC)/2*AB= 93
    T[ABD](triangle)= AB*AD/2= 54
    T[BCD](triangle)= 39
    r= 13*18,9737*7,8103/(4*39)= 12,349

  • @santiagoarosam430
    @santiagoarosam430 4 месяца назад

    Las alineaciones BA y DA cortan la circunferencia en los puntos F y E respectivamente→ Potencia del punto A respecto a la circunferencia = AB*AF=AD*AE→ 6a=18*(18-13)→ a=15 → FC²=BF²+BC²→ (2r)²=(6+a)²+13²=21²+13²→ r=(√610)/2 =12,34908....
    Gracias y un saludo cordial.

  • @edwinpittomvils2570
    @edwinpittomvils2570 3 месяца назад

    Give coordinates to the different points: A(u-6,v), B(u,v), C(u,v-13) and D(u-6,v-18). Since B, C and D are on a circle with radius r you get 3 equations with 3 unknowns u,v,r. The equations are: u^2+v^2=r^2; u^2+(v-13)^2=r^2; (u-6)^2+(v-18)^2=r^2. Out of the first 2 equations you get v= 13/2 and using the third equation you get u=21/2. Using then the first equation you get r = sqrt(610)/2.

  • @himo3485
    @himo3485 4 месяца назад +1

    18-13=5 18*5=x*6 6x=90 x=15
    (15+6)/2=21/2 (18+5)/2=23/2
    R²=(21/2-6)²=(23/2)² R²=81/4+529/4=610/4 Radius of the circle = √610/2

  • @fredturk6447
    @fredturk6447 4 месяца назад

    I think it’s much simpler to use the formula for a circle. (x-a)^2 + (y-b)^2 = r^2 where a and b are the center coordinates of the circle.
    The intersection points are (0,0),(6,5)and(6,18) (arbitrary origin on bottom point).
    Then solve the three equations generated by the three intersection points. Easy!

  • @Farmhr
    @Farmhr 4 месяца назад +1

    (x-h)^2+(y-k)^2=r^2 B(x,y) = 0,0 C=0-13 D=-6,-18
    then h^2+k^2=r^2 ...... eq1
    h^2+-(13-k)^2=r^2 ...........eq2
    (-6-h)^2+(-18-k)^2=r62 ......eq3
    solve eq1=eq2 k=169/26
    solve eq3=eq1 360-12h+h^2-36k+k^2=r^2 suitation k h=[360-(36*19/26)]/12
    suitation h k eq1 r=12.349 As same answer

  • @anandharamang3289
    @anandharamang3289 4 месяца назад

    By symmetry, AF = 5, and by chords theorem AP= 15 and AB =6 given. Then form ∆ PFB, the radius is the product of diagonal ( PF * FB) divided by the double the height of ∆ (2*5)
    Hence,( √(15^2+5^2) * √(6^2+5^2))/(2*5)
    √250*√61/10 = 5*√610/10 = √610/2

  • @quigonkenny
    @quigonkenny 4 месяца назад

    Let O be the center of the circle. Draw radius OT, so that OT is perpendicular to BC and intersects it at M. As OT is perpendicular to BC and BC is parallel to AD, OT is also perpendicular to AD, and intersects it at N.
    As BC is a chord, and as OT is an intersecting radius that is perpendicular to BC, then OT bisects BC, thus BM = MC = 13/2.
    As ∠ANM = 90° and ∠NMB = 90°, then ABMN is a rectangle, and thus NM = AB = 6 and AN = BM = 13/2. As AD = 18, ND = 18-13/2 = 23/2.
    Extend AD from A to E so that ED is a chord. OT bisects ED for the same reasons as it does BC, therefore EN = ND.
    EN = ND
    EA + AN = ND
    EA + 13/2 = 23/2
    EA = 10/2 = 5
    By the intersecting chords theorem, if two chords of a circle intersect, then the products of the lengths of each side of the intersection are equal for each chord. Extend AB from A to F, so that FB is a chord. As A is the intersection point between FB and ED, then FA•AB = EA•AD.
    FA•AB = EA•AD
    6FA = 5(18) = 90
    FA = 90/6 = 15
    Method 1:
    Draw OB, and draw radius OS such that OS is perpendicular to FB and intersects it at P. As above, OS bisects FB, so FP = PB = (15+6)/2 = 21/2. As PB is perpendicular to BC, PB = OM = 21/2. As BM is perpendicular to FB, OP = BM = 13/2.
    Triangle ∆OBM:
    BM² + OM² = OB²
    (13/2)² + (21/2)² = r²
    r² = 169/4 + 441/4 = 610/4
    r = √(610/4) = √610/2
    Method 2:
    If two chords intersect perpendicularly, then the sum of the squares of the divided chord segments equals 4 times the radius squared.
    AB² + FA² + AD² + EA² = 4r²
    6² + 15² + 18² + 5² = 4r²
    4r² = 36 + 225 + 324 + 25 = 610
    r² = 610/4
    r = √(610/4) = √610/2

  • @mibmib4414
    @mibmib4414 Месяц назад

    sin(ADC)=6/sqrt(61); Pitagoras: BD=6*sqrt(10); R=BD/(2*sin(ADC))=6*sqrt(10)/(2*6/sqrt(61))=sqrt(610)/2. That's all.

  • @michaeldoerr5810
    @michaeldoerr5810 4 месяца назад +1

    If I understand these methods, the first method triangulates to find the radius using the Pythagorean Thrm twice then uses a circle theorem and the second method requires applying chords twice. I thnk that this is the first time chords are diffcult to visualize.

    • @michaeldoerr5810
      @michaeldoerr5810 4 месяца назад +1

      On second thought, I understood both methods!!!

  • @brettgbarnes
    @brettgbarnes 4 месяца назад

    Alternative "Insane" Method
    For number-crunching lovers only. If you're at all error prone with long complicated equations... don't even bother. If you like spending at least half an hour doing tons of algebra on a single problem... go for it. It took me three attempts, but it does work.
    Use chord bisector radius to create two Pythagoras equations.
    r² = (r - x)² + (13/2)²
    r² = [r - (x + 6)]² + [18 - (13/2)]²
    Have fun!

  • @christianaxel9719
    @christianaxel9719 4 месяца назад

    At 13:39 PBC is an inscribed rectangle triangle then CP is a diameter; from 14:58 all you need is to use Pythagoras to find |CP|, and then R=|CP|/2: |CP|=√(21²+13²)=√(610), R= √(610)/2.

    • @daakudaddy5453
      @daakudaddy5453 4 месяца назад +1

      Glad I'm not the only one who thought of this. As soon as I saw the diagram, I thought of extending BA and using the right triangle.

  • @ДаниилКадетов-и9з
    @ДаниилКадетов-и9з 4 месяца назад +2

    Why not just use triangles OFM and OBN? We will have r^2=OM^2+MF^2 and r^2=ON^2+NB^2. NB=13/2=6.5, MF=MD=18-6.5=11.5, ON=OM+6. Let OM=x, then r^2=x^2+11.5^2, r^2=(x+6)^2+6.5^2. Subtracting first from second: 0=(x+6)^2+6.5^2-x^2-11.5^2=2*x*6+6^2+6.5^2-11.5^2;x=((11.5-6.5)(11.5+6.5)-36)/12=(5*18-36)/12=54/12=27/6. Then r=sqrt(27^2/6^2+11.5^2)=sqrt(152.5)=12.349.....

  • @VojislavZivkovic-vg3un
    @VojislavZivkovic-vg3un 3 месяца назад

    Much faster would be following. If distance from the center to AD we lebel x, than: R^2=x^2 + 11.5^2 and R^2=6.5^2 + (6+x)^2
    Two equations and two unknowns.

  • @peterkrauliz5400
    @peterkrauliz5400 3 месяца назад +1

    Why not use Analytic Geometry and intersect 2 cords to get the center of the circle? The 2 lines are defined by perpendicular by-sectors of the 2 cords. It looks these RUclips math teachers hate Analytic Geometry.

  • @madhabsikder9670
    @madhabsikder9670 Месяц назад

    I was following your few videos, your solution is good, but you need to improve a bit. That is you first explain the problem, then explain to get the desired result what are the information is needed, and how can get those information. Then you start deriving the solution.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 4 месяца назад

    (18]^2= 244 (13)^2 =169 (6)^2 =36 {244A+169B+36C}= 419ABC 419ABC/360°=1.59ABC (ABC ➖ 59ABC+1)

  • @user-bwongch456
    @user-bwongch456 2 месяца назад

    How do you come up with the formula after 15:00

  • @dannylin1993
    @dannylin1993 3 месяца назад

    已知三點座標,可以直接求圓面積了。

  • @sarantis40kalaitzis48
    @sarantis40kalaitzis48 4 месяца назад

    Second Method until the value of AP=15 is excellent.But then misses the obvious, that Inscribed Angle

  • @giuseppemalaguti435
    @giuseppemalaguti435 4 месяца назад

    R^2=6,5^2+a^2...R^2=(18-6,5)^2+(a-6)^2...a=10,5...R^2=6,5^2+10,5^2=152,5

  • @PCTprogramming
    @PCTprogramming 3 месяца назад

    18, 6, 13 replaced with 17, 7 , 10 for this calculation for get better results.

  • @exlife9446
    @exlife9446 3 месяца назад

    I use calculator to compute, r = sqrt(9^2 + 23^2) / 2 ≈ 12.35.

  • @appybane8481
    @appybane8481 4 месяца назад +2

    after 15:00 :Use Pythagorean theorem on triangle PBC

  • @sebrosacademy
    @sebrosacademy 3 месяца назад

    nice sir

  • @imetroangola17
    @imetroangola17 4 месяца назад

    Excelente solução! 🎉

  • @sorourhashemi3249
    @sorourhashemi3249 4 месяца назад

    2nd Method much better thanks

  • @diosesamor3147
    @diosesamor3147 4 месяца назад

    La línea AD pasa por el centro del círculo?

  • @professorrogeriocesar
    @professorrogeriocesar 4 месяца назад

    Muito bom e muito obrigado!

  • @Palang.Riding
    @Palang.Riding 2 месяца назад

    I think u did mistake on area of BCD. The height it’s not AB

  • @tielee5234
    @tielee5234 3 месяца назад

    🎉

  • @haiduy7627
    @haiduy7627 4 месяца назад +1

    Likes 🌹🌹🌹🌹💯👍💫🌹🌹🌹🌹🌹🌹💯💯💯💫😊😊

  • @haiduy7627
    @haiduy7627 4 месяца назад +1

    🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉

  • @sorourhashemi3249
    @sorourhashemi3249 4 месяца назад

    EC in triangle DCB is not completely the height

    • @Grizzly01-vr4pn
      @Grizzly01-vr4pn 4 месяца назад

      Yes it is.

    • @giuseppetortelli
      @giuseppetortelli 3 месяца назад

      Please could you explain why?

    • @Grizzly01-vr4pn
      @Grizzly01-vr4pn 3 месяца назад

      @@giuseppetortelli The OP explain why they think it isn't, or me explain why it is?

  • @viswanathanlakshminarayana1576
    @viswanathanlakshminarayana1576 3 месяца назад

    bcd is a obtuse triangle bce is rt angle triangle pl correct me

  • @haiduy7627
    @haiduy7627 4 месяца назад +1

    Nice 🌹🌹🌹🌹💯👍🎉💗🌹🌹💯👍💫🌹😊😊🎉🎉❤❤

  • @haiduy7627
    @haiduy7627 4 месяца назад +1

    ❤❤❤❤❤❤❤❤❤❤❤❤❤

  • @bijanminaee7600
    @bijanminaee7600 4 месяца назад

    The solutions offered lack elegance.
    I much rather have my teeth extracted (without anesthetics) than attack this problem.
    What was the motivation in offering this problem?

  • @Трактор-н8п
    @Трактор-н8п 3 месяца назад

    би би

  • @VishwasJadhav-u5x
    @VishwasJadhav-u5x 2 месяца назад

    You are wrong area bcd you have taken ab is base which is wrong so the area 39 is wrong

  • @rumjordan
    @rumjordan 4 месяца назад

    سخيف