Can you calculate area of the Green shaded Quadrilateral? | (Triangle) |

Поделиться
HTML-код
  • Опубликовано: 25 дек 2024

Комментарии •

  • @sivaramanr6625
    @sivaramanr6625 День назад +3

    உங்களது சேவை விலை மதிக்க மூடியாதது! ❤❤❤

    • @PreMath
      @PreMath  День назад +2

      மிக்க மகிழ்ச்சி அன்பே❤️🙏
      உங்கள் தொடர்ந்த அன்புக்கும் ஆதரவுக்கும் நன்றி!
      ஆசீர்வதிக்கப்பட்டிருங்கள் 😀

  • @saumendrakumarnayak832
    @saumendrakumarnayak832 День назад +3

    Merry Christmas, team Premath.

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 День назад +1

    That’s very good
    Very good
    Thanks Sir
    It is wonderful method
    Again thanks for your efforts
    ❤❤❤❤

  • @jamestalbott4499
    @jamestalbott4499 День назад

    Thank you!

  • @alster724
    @alster724 День назад

    Nice solution and Merry Christmas from The Philippines 🇵🇭 Premath Team!

  • @georgebliss964
    @georgebliss964 День назад +2

    Area of triangle ABC = 108.
    Area of triangle ACD = 30.
    Therefore area of triangle ABD = 108 - 30 = 78.
    Then area of triangle EBD = 78 / 2 = 39.
    Thus green area = 108 - 39 = 69.

  • @alexundre8745
    @alexundre8745 День назад +2

    Bom dia Mestre
    Feliz Natal

    • @PreMath
      @PreMath  День назад +1

      Thanks dear❤️
      Merry Christmas! Wishing you a happy holiday season as well! 😊🙏

  • @DB-lg5sq
    @DB-lg5sq День назад

    Merci beaucoup pour votre effort

  • @uwelinzbauer3973
    @uwelinzbauer3973 День назад +2

    I calculated A=triangle areas AED+ACD, same result 69.
    Thanks and best regards!

    • @PreMath
      @PreMath  День назад +2

      Nice work!
      You are very welcome!
      Thanks for sharing ❤️
      Merry Christmas! Wishing you a happy holiday season as well! 😊🙏

  • @sorourhashemi3249
    @sorourhashemi3249 День назад

    Thanks easy

  • @Abdelfattah-hr8tt
    @Abdelfattah-hr8tt День назад +1

    Merry Christmas 🎄🎁

  • @himo3485
    @himo3485 День назад +2

    AD=DB=13 CD=√[13²-12²]=5
    CB=5+13=18 12 : 18 = 2 : 3 ACB∞DEB DE=2x AE=EB=3x
    (2x)²+(3x)²=13² 13x²=169 x=√13
    Greeen shaded area = 12*18*1/2 - 2√13*3√13*1/2 = 108 - 39 = 69

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for sharing ❤️
      Merry Christmas! Wishing you a happy holiday season as well! 😊🙏

  • @cyruschang1904
    @cyruschang1904 День назад

    Triangles DEB and ACB are similar
    If CD = a & AE = EB = b
    b/13 = (13 + a)/2b
    2b^2 = 13(13 + a)
    12^2 + (13 + a)^2 = 4b^2 = 26(13 + a) a^2 + 12^2 - 13^2 = 0
    a^2 = 13^2 - 12^2 = 25 => a = 5
    18/2b = b/13, b^2 = 9(13) => b = 3√13
    Green area = (12)(18)/2)(1 - (13/6√13)^2) = 108(1 - 13/36) = 108(23/36) = 69

  • @phungpham1725
    @phungpham1725 День назад +1

    1/ AD = BD= 13 --> CD= 5 ( the triangle ACD is a 5/12/14 triples)
    2/ Area of the green area = Area of triangle ACD+ Area of triangle ADE
    Because triangles 8:04 ADE and BDE are congruent
    Focus on the triangle BDE. From E drop the height EH to the base BD, we have EH//= 1/2 AC= 6
    So area of the green area = 1/2( 5x12 + 6x13) = 30+ 39= 69 sq units😅😅😅

    • @PreMath
      @PreMath  День назад

      Typo! 5-12-13
      Thanks for sharing ❤️
      Merry Christmas! Wishing you a happy holiday season as well! 😊🙏

    • @phungpham1725
      @phungpham1725 День назад

      Thank you for correcting my typo😊

    • @phungpham1725
      @phungpham1725 День назад

      @@PreMathMerry Christmas to you from Texas

  • @zawatsky
    @zawatsky День назад

    AD=DB, значит стороны ▲ACD 12 и 13, т. е. CD=5 (пифагорова тройка). Теперь мы знаем пропорции катетов - 18 к 12 или 3 к 2. Площадь большого 18*12/2=6*18. Катеты малого: 9x²+4x²=13x²=13², откуда х²=13. Его площадь 3*2х²/2=3х²=3*13. Считаем разницу. 6*18-3*13=3(2*18-13)=3(36-13)=3*23=69.

  • @AmirgabYT2185
    @AmirgabYT2185 День назад +2

    S=69 square units

    • @PreMath
      @PreMath  День назад +1

      Excellent!
      Thanks for sharing ❤️🙏

  • @marioalb9726
    @marioalb9726 21 час назад +1

    Triangle ACD:
    Pytagorean triplet 5-12-13 --> b₁= 5cm
    Triangle ABC:
    b = b₁+b₂ = 5+13 = 18 cm
    A = ½bh = ½12*18 = 108cm²
    Pytagorean theorem:
    c²=12²+18² ---> c= 6√13cm ; c₁=½c
    Similarity of triangles:
    h₁/c₁ = 12/18 --> h₁= 2√13cm
    Triangle EDB:
    A₁= ½c₁h₁= ½*3√13*2√13 = 39 cm²
    Green shaded area:
    A₂= A- A₁= 108-39= 69 cm² ( Solved √ )

  • @marioalb9726
    @marioalb9726 20 часов назад +1

    Triangle ACD:
    Pytagorean triplet 5-12-13 --> b₂= 5cm
    A₂= ½.b₂.h = ½*5*12=30 cm²
    Triangle ABC:
    b = b₁+b₂ = 13+5 = 18 cm
    A = ½bh = ½12*18 = 108cm²
    Triangle ADE:
    A₃ = ½(A-A₂) = ½(108-30)=39cm²
    Green shaded area:
    A= A₂+A₃= 30+39= 69 cm² ( Solved √ )
    There's no need to calculate 'x' and 'h' as video does.

  • @bigm383
    @bigm383 16 часов назад

    Merry Christmas, Professor. Thanks for a great year of mathematics!👍😀

  • @murasame6111
    @murasame6111 22 часа назад

    You can make a point J lies on CB which is perpendicular with JE.JE =1/2AC(mid pt thm).JE is height of Triangle DEB and DB is base.This will quick to finish the question

  • @adept7474
    @adept7474 День назад

    S(green) = S(ACE) + S(CDE) = [1/2 + (5/18)•(1/2)] • S(ABC) = (23/36)•108 = 69.

  • @wasimahmad-t6c
    @wasimahmad-t6c День назад

    12×15.754÷2=92.524full area-41.7=52.82green area

  • @alexniklas8777
    @alexniklas8777 День назад

    S(ACDE)=108-39=69
    Thanks sir!😊

  • @reynaldowify
    @reynaldowify 16 часов назад

    Merry Xmas. Just draw a perpendicular from BC to point E, now you got two similar triangles. The righmost is ABC area divided by 4, and the remaining little triangle has base 6, and height 4 by similitude

  • @MrPaulc222
    @MrPaulc222 2 часа назад

    Similar triangles ABC and BED.
    Solution is ABD - BED.
    AB is 2a.
    Corresponding sides on the triangles are:
    b, a, 13
    12, x+13, 2a
    I suspect the key is in seeing that ABD is isosceles.
    ACD is x, 12,13, so CD (or x) = 5 due to 5,12,13 being a Pythagorean triple.
    ABC: 12^2 + 18^2 = (AB)^2, so (AB)^2 is 468.
    AB = 2*sqrt(117), so a = sqrt(117).
    Update the sides of the similar triangles:
    b, sqrt(117), 13
    12, 18, 2*sqrt(117)
    Forgot to calculate b:
    169 - 117 = 52, so b = 2*sqrt(13).
    Now the areas:
    ABC: (18*12)/2 = 108
    The 2's cancel, so sqrt(117)*sqrt(13)
    BED: sqrt(117)*2*(sqrt(13))/2
    The 2's cancel, so sqrt(117)*sqrt(13) = sqrt(1521) which is a convenient 39.
    Green quadrilateral is 108-39 = 69 un^2

  • @syedmdabid7191
    @syedmdabid7191 13 часов назад

    Hoc est 65 sq. Unis, spondeo Responsi. 😅

  • @michaelkouzmin281
    @michaelkouzmin281 День назад

    a bit more ridiculous solution with a respective bit of trig )))):
    1. let a = angle ABC; x = BE = EA; h = DE;
    2. cos(a) = BE/DB = x/13;
    sin(a) = AC/AB = 12/2x=6/x;
    3. sin^2(a)+cos^2(a)=1 => (6/x)^2+(x/13)^2 = 1
    2 positive roots ( there are 2 negative as well but let us drop them now)
    x1 = 2*sqrt(13) should be rejected as respective CB will be equal to 8 what is less than CD=13;
    x2 = 3*sqrt(13) - accepted;
    3. h = sqrt(13^2-x^2)= sqrt(13^2-(3*sqrt(13))^2)= 2*sqrt(13)
    4. A(DEC) = x*h/2 = 39 sq.units
    5. AB = 2x= 6*sqrt(13)
    6. CB = SQRT(AB^2-AC^2) = sqrt (( 6*sqrt(13))^2-12^2) = 18
    7. A(ABC) = CA*CB/2 = 12*18/2 = 108 sq units;
    8. A(ACDEgreen) = A(ABC)-A(DEC)= 108 - 39 = 69 sq units.

  • @marcgriselhubert3915
    @marcgriselhubert3915 День назад

    *Let's name x = CD. Triangles BED and BCA are similar (same angles), so DE/12 = BE/(13 + x) = 13/(2.BE), so 2.(BE^2) = 13.(13 + x)
    and 4.(BE^2) = 338 + 26.x (eq 1)
    In triangle ABC: AB^2 = 4.(BE^2) = 12^2 + (13 + x)^2, so 4.(BE^2) = (x^2) + 26.x + 313 (eq 2)
    With (eq 1) and (eq 2) we get: (x^2) + 26.x +313 = 338 + 26.x, and that gives x^2 = 25 and x = 5.
    *Area of triangle ABC = (1/2).BC.CA = (1/2).(13 + 5).12 = 108
    *We had 2.(BE^2) = 13.(13 + x), so 2.(BE^2) = 13.18 = 234, so BE^2 = 117 and BE = sqrt(117) = 3.sqrt(13)
    As DE/12 = (BE/(13 + x), we get DE = (12.(3.sqrt(13))(13 + 5) = 2.sqrt(13), and the area of triangle BED is (1/2).BE.DE = (1/2).(3.sqrt(13)).(2.sqrt(13)) = 39
    Finally by difference the green shaded area is 108 - 39 = 69.

  • @unknownidentity2846
    @unknownidentity2846 День назад +2

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    First of all we observe that the triangles ADE and BDE are congruent:
    AE = BE
    DE is common
    ∠AED = ∠BED = 90°
    Therefore we can conclude that AD=BD=13. Now we apply the Pythagorean theorem step by step to the right triangles ACD, ABC and BDE:
    AC² + CD² = AD²
    12² + CD² = 13²
    144 + CD² = 169
    CD² = 25
    ⇒ CD = √25 = 5
    BC = BD + CD = 13 + 5 = 18
    AB² = AC² + BC² = 12² + 18² = 6²*2² + 6²*3² = 6²*(2² + 3²) = 6²*(4 + 9) = 6²*13
    ⇒ AB = √(6²*13) = 6√13
    ⇒ BE = AB/2 = 3√13
    BE² + DE² = BD²
    (3√13)² + DE² = 13²
    9*13 + DE² = 13*13
    DE² = 13*13 − 9*13 = (13 − 9)*13 = 4*13 = 2²*13
    ⇒ DE = √(2²*13) = 2√13
    Now we are able to calculate the area of the green quadrilateral:
    A(ACDE) = A(ABC) − A(BDE) = (1/2)*AC*BC − (1/2)*BE*DE = (1/2)*12*18 − (1/2)*(3√13)*(2√13) = 108 − 39 = 69
    Best regards from Germany

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for sharing ❤️
      Merry Christmas! Wishing you a happy holiday season as well! 😊🙏

    • @GetMatheFit
      @GetMatheFit День назад

      Sehr schön gelöst.
      Alle unbekannten Längen berechnet.
      Vorbildlich 👌🔝👍
      Schöne Feiertage
      Gerald

  • @sergioaiex3966
    @sergioaiex3966 День назад +1

    Solution:
    Connecting A to D, we will form an isosceles triangle ABD and since AE is equal to EB, AD value is 13
    Let's calculate CD by applying the Pythagorean Theorem
    AC² + CD² = AD²
    (12)² + CD² = (13)²
    144 + CD² = 169
    CD² = 25
    CD = 5
    BC = BD + CD
    BC = 13 + 5
    BC = 18
    Once again, let's calculate AB by applying the Pythagorean Theorem
    AC² + BC² = AB²
    (12)² + (18)² = AB²
    144 + 324 = AB²
    AB² = 468
    AB = 6√13
    Since AB = 6√13, AE = 3√13 and BE = 3√13
    Once again, let's calculate DE by applying the Pythagorean Theorem
    AE² + DE² = AD²
    (3√13)² + DE² = (13)²
    117 + DE² = 169
    DE² = 52
    DE = 2√13
    Green Shaded Area = ∆ ABC Area - ∆ BDE Area ... ¹
    ∆ ABC Area = ½ 12 . 18
    ∆ ABC Area = 108
    ∆ BDE Area = ½ 3√13 . 2√13
    ∆ BDE Area = ½ 3√13 . 2√13
    ∆ BDE Area = 39
    Replacing in ¹
    Green Shaded Area = 108 - 39
    Green Shaded Area = 69 Square Units ✅

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for sharing ❤️
      Merry Christmas! Wishing you a happy holiday season as well! 😊🙏

  • @wackojacko3962
    @wackojacko3962 День назад

    FAQ'S: What does SSS SAS ASA AAS MIS ISS IPP I mean? ...these are questions asked by three types of people in the world - those who can count and those who can't. I'm one of em! 😊

    • @jimlocke9320
      @jimlocke9320 День назад +1

      SSS SAS ASA AAS ways of proving two triangles are congruent, referencing the corresponding theorems. S = side, A = angle, so SAS is an equal side, then angle, then side. These are common abbreviations used in high school geometry in the USA. I am not familiar with MIS ISS IPP. Maybe the same theorems in other languages?

    • @Slimmo_09
      @Slimmo_09 10 часов назад

      @@jimlocke9320 These are just other scientific abbreviations that we use:
      ISS = International Space Station;
      IPP = Inflatable Penile Prosthesis;
      MIS = Meteorological Impact Statement (think Victorian bushfires currently).
      The above are what I am familiar with, the "S" in MIS could well be software in some cases.
      Given how common abbreviations are now, there could well be engineering versions for these.

    • @wackojacko3962
      @wackojacko3962 9 часов назад

      Almost... MISS ISS IPP I is a river​. 3 types of people but only account for two... just a play on words! I tease a lot, I mean I do the math but then gotta have some fun is all . 😊