Math Olympiad l Simplify this Radical if You’re a Genius l 90% Failed to solve!

Поделиться
HTML-код
  • Опубликовано: 27 янв 2025

Комментарии • 3

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 16 дней назад

    x^1 2^3 ➖ 3^410/10 2^1 ➖3^2^2 1 ➖ 3^1^2 3^2 (x ➖ 3x+2).

  • @walterwen2975
    @walterwen2975 16 дней назад +1

    Math Olympiad: ¹²√(161 - 720/√20) =?
    720/√20 = [36(√20)²]/√20 = 4(9)(√20) = 2(9)(2√20) = 2(√81)(√80)
    161 - 720/√20 = (√81)² - 2(√81)(√80) + (√80)² = (√81 - √80)² = (9 - 4√5)² > 0
    9 - 4√5 = (√5)² - 2(√5)(2) + 2² = (√5 - 2)², (9 - 4√5)² = [(√5 - 2)²]² = (√5 - 2)⁴
    8(√5 - 2) = 8√5 - 16 = 5√5 - 15 + 3√5 - 1 = (√5)³ - 3(√5)²(1) + 3(√5)(1)² - 1³ = (√5 - 1)³
    (√5 - 2) = [(√5 - 1)³]/8 = [(√5 - 1)/2]³ > 0, (√5 - 2)⁴ = {[(√5 - 1)/2]³}⁴ = [(√5 - 1)/2]¹²
    ¹²√(161 - 720/√20) = ¹²√[(√5 - 2)⁴] = ¹²√{[(√5 - 1)/2]¹²}= (√5 - 1)/2 > 0

  • @adribber
    @adribber 16 дней назад +1

    ¹²√(161 - 720/√20) = ?
    Let, k = ¹²√(161 - 720/√20)
    k = ¹²√(161 - 720√5/2√5*√5)
    = ¹²√(161 - 720√5/10)
    = ¹²√{161 - 2√(5*6⁴)}
    = ¹²√{161 - 2√(80*81)}
    = ¹²√{81 - 2√(80*81) + 80}
    = ¹²√(√81 - √80)²
    = ⁶√{9 - 2√(4*5)}
    = ⁶√{5 - 2√(4*5) + 4}
    = ⁶√(√5 - √4)²
    = ³√(√5 - 2)
    Let, a³ = √5 - 2 , b³ = √5 + 2
    a³ - b³ = - 4
    a³b³ = 1
    ab = 1
    (a - b)³ = a³ - b³ - 3ab(a - b)
    = - 4 - 3(a - b)
    (a - b)³ + 3(a - b) + 4 = 0
    (a - b)³ + 1 + 3(a - b + 1) = 0
    (a - b + 1){(a - b)² - (a - b) + 1} + 3(a - b + 1) = 0
    (a - b + 1){(a - b)² - (a - b) + 4} = 0
    a - b + 1 = 0 , (a - b)² - (a - b) + 4 = 0
    (a - b)² - (a - b) + 4 = 0
    D = (- 1)² - 4*1*4 = - 15 < 0 Rejected
    a - b + 1 = 0
    ∴ b = a + 1
    Recall, ab = 1
    a² + a - 1 = 0
    a = [- 1 ± √{1² - 4*1*(- 1)}]/2*1
    = (- 1 ± √5)/2
    ∴ a = (- 1 + √5)/2 (a > 0)
    k = ³√(√5 - 2)
    = ³√a³
    = a
    ∴ k = (- 1 + √5)/2