Math Olympiad | A Nice Algebra Problem | 95% Failed to solve!

Поделиться
HTML-код
  • Опубликовано: 15 янв 2025

Комментарии • 3

  • @wes9627
    @wes9627 3 часа назад +1

    c=floor(ln2320/ln2)=11; b=floor[ln(2320-2^11)/ln2]=8; a=ln(2320-2^11-2^8)/ln2=4.

  • @abbeydudeuk
    @abbeydudeuk 3 часа назад +1

    1^4 = 1^6 base is same but power is not then how u equated a=4?

  • @adribber
    @adribber 29 минут назад

    2^a + 2^b + 2^c = 2320 (a < b < c)
    2^a + 2^b + 2^c = 2^4*5*29
    Let, a = k , b = k + m , c = k + n (k, m , n ∈ N)
    2^k + 2^(k + m) + 2^(k + n) = 2^4*5*29
    2^k + 2^k*2^m + 2^k*2^n = 2^4*5*29
    2^k(2^m + 2^n + 1) = 2^4*5*29
    2^k : even number,
    2^m , 2^n : even number,
    2^m + 2^n + 1 : odd number
    ∴ 0 ≤ k ≤ 4
    if, k = 0
    2^0*(2^m + 2^n + 1) = 2^4*5*29
    1*(2^m + 2^n + 1) = 2^4*5*29
    odd number * odd number ≠ even number Failed
    ∴ k ≠ 0
    if, k = 1
    2^1*(2^m + 2^n + 1) = 2^4*5*29
    2*(2^m + 2^n + 1) = 2^4*5*29
    (2^m + 2^n + 1) = 2^3*5*29
    odd number ≠ even number Failed
    ∴ k ≠ 1
    if, k = 2
    2^2*(2^m + 2^n + 1) = 2^4*5*29
    (2^m + 2^n + 1) = 2^2*5*29
    odd number ≠ even number Failed
    ∴ k ≠ 2
    if, k = 3
    2^3*(2^m + 2^n + 1) = 2^4*5*29
    (2^m + 2^n + 1) = 2*5*29
    odd number ≠ even number Failed
    ∴ k ≠ 3
    if, k = 4
    2^4*(2^m + 2^n + 1) = 2^4*5*29
    (2^m + 2^n + 1) = 5*29
    odd number = odd number Pass
    ∴ k = 4
    Recall, a = k
    ∴ a = 4
    ∴ 2^m + 2^n + 1 = 5*29 = 145
    2^m + 2^n = 144
    2^m + 2^n = 2^4*3^2
    0 ≤ m ≤ 4
    if, m = 0
    2^0 + 2^n = 2^4*3^2
    1 + 2^n = 2^4*3^2
    2^n = 2^4*3^2 - 1
    even number ≠ odd number Failed
    ∴ m ≠ 0
    if, m = 1
    2^1 + 2^n = 2^4*3^2
    2 + 2^n = 2^4*3^2
    2^n = 2^4*3^2 - 2
    2^n = 142 = 2*71 (n ∈ N) Failed
    ∴ m ≠ 1
    if, m = 2
    2^2 + 2^n = 2^4*3^2
    4 + 2^n = 2^4*3^2
    2^n = 2^4*3^2 - 4
    2^n = 140 = 2^2*5*7 (n ∈ N) Failed
    ∴ m ≠ 2
    if, m = 3
    2^3 + 2^n = 2^4*3^2
    8 + 2^n = 2^4*3^2
    2^n = 2^4*3^2 - 8
    2^n = 136 = 2^3*17 (n ∈ N) Failed
    ∴ m ≠ 3
    if, m = 4
    2^4 + 2^n = 2^4*3^2
    2^n = 2^4*3^2 - 2^4
    = 2^4(9 - 1)
    = 2^4*8
    = 2^4*2^3
    = 2^7
    ∴ n = 7 Pass
    ∴ m = 4
    ∴ k = 4 , m = 4 , n = 7
    Recall, a = k , b = k + m , c = k + n
    a = 4 , b = 8 , c = 11
    Verifying
    2^a + 2^b + 2^c =? 2320
    2^4 + 2^8 + 2^11 =? 2320
    16 + 256 + 2048 =? 2320
    2320 = 2320 Pass
    ∴ a = 4 , b = 8 , c = 11