Нейронные сети за 10 минут

Поделиться
HTML-код
  • Опубликовано: 19 янв 2025

Комментарии • 179

  • @ДмитрийКоробченко-л2й

    Рекомендуемый порядок просмотра:
    1. Нейронные сети за 10 минут: ruclips.net/video/GT6imQDxqko/видео.html
    2. Как обучить нейронную сеть: ruclips.net/video/uWd9nyn0ql8/видео.html
    3. Нейронная сеть на Python с нуля: ruclips.net/video/xMz7XSaqdRA/видео.html
    4. Обратное распространение ошибки: ruclips.net/video/bW4dKxtUFpg/видео.html
    5. Обучение нейронной сети на Python: ruclips.net/video/bXGBeRzM87g/видео.html

    • @yevhenlebedenko2049
      @yevhenlebedenko2049 3 года назад

      Как можно связаться с Вами? Есть интересный вопрос) Спасибо)

    • @tox_im3335
      @tox_im3335 3 года назад

      @@yevhenlebedenko2049 никак.

    • @alexperov1539
      @alexperov1539 4 месяца назад

      @@tox_im3335 я-девушка

  • @Sapsan40k
    @Sapsan40k 4 года назад +81

    Давно уже пришёл к выводу, что умение просто объяснить сложные вещи - это признак очень глубокого понимания предмета.
    Подписался.
    Есть шальная мысль попробовать в своей специальности (я биолог) - но понятно, что само оно не сделается, надо немало усилий приложить :)

    • @АрманСоколовский
      @АрманСоколовский 3 года назад +1

      Получилось?..

    • @theodoretryman4289
      @theodoretryman4289 2 года назад +1

      Золотые слова

    • @ulakrist
      @ulakrist 2 года назад +4

      Кста... я тоже биолог, но мне понятно. Больше того, я заканчивала 2 года назад курсы по С#, ООП и VS для себя.
      Ну очень удивилась, насколько генетика сложнее программирования. Даже мемами немного троллила про совпадения обеих областей знаний.
      Практика нужна. И, конечно, хороший проводник в знания.

    • @rad9587
      @rad9587 Год назад

      @@ulakrist ну так и в программировании есть трудные задачи. Это некорректно их сравнивать, вы не встречались с более сложными задачами, как я вижу

    • @ulakrist
      @ulakrist Год назад

      @@rad9587 как и вы с генетикой. Но я так, как вы, не могу сказать, что "вижу", ибо это будет враньё)

  • @miakura832
    @miakura832 5 лет назад +63

    Графика просто Вау, мужик, ждём видосов

  • @АлексейВласов-ч6й
    @АлексейВласов-ч6й 4 года назад +11

    Лучшее видео про введение в нейросети что я видел в рутубе, даже лучше чем 3Blue, имхо, продолжайте пожалуйста))

  • @ИгорьБирюков-ф9х
    @ИгорьБирюков-ф9х 5 лет назад +51

    Вот она... Магия линейной алгебры))))

  • @Конструкт-к8ъ
    @Конструкт-к8ъ 5 лет назад +27

    Спасибо за видео, все кратко и по делу, раза 3 переслушивал, чтоб хорошо понять :)

  • @New-vk6ks
    @New-vk6ks 3 года назад +5

    очень подробно и грамотно все объясняете. правда иногда нужно по 2-3 раза переслушать. лайк и ждем новых роликов. От себя прошу разобрать сверточные сети с 0. также как и этот пример

  • @alexey_pryadko
    @alexey_pryadko 5 лет назад +7

    Спасибо за за очень понятное объяснение! Смотрел видео других ютуберов, так не чего и не понял... Посмотрел ваше видео, и всё хорошо усвоелось. Спасибо!

    • @alexey_pryadko
      @alexey_pryadko 3 года назад

      Было дело, а хотя я двигаюсь в одном русле

  • @СергейКондулуков-з9ч
    @СергейКондулуков-з9ч 2 года назад +1

    Ну просто здорово. Я пенсионер мне 63 года. Когда то пробывал изучать линейную алгебру и забросил. А тут так интересно рассказывается. Я понял это математика. Но и не только. Хочу попробывать создать простейшую нейронную сеть естественно на Питон.

  • @ДмитрийПантелеев-д9я

    Очень интересно. Пожалуйста, продолжайте!

  • @ivanweber5125
    @ivanweber5125 4 года назад +10

    Более понятного объяснения я еще не слышал) Лайк + подписка + респект!

  • @АлександрЛевочко-е8з

    Очень круто! Емко и по делу, с доходчивой анимацией! Лайк за проделанную работу ;)

    • @ДмитрийКузин-я2з
      @ДмитрийКузин-я2з 2 года назад

      Что для одного круто, для другого - элементарщина.. В этом и красота Жизни.
      Попробуйте подкинуть сахар для муравья - почувствуйте себя "богом"

  • @андрейандрексон

    Спасибо, решил посмотреть, а в статьях так написано что не поймёшь.
    А ты всё рассказал быстро, чётко и доходчиво)

  • @generalakano2788
    @generalakano2788 2 года назад +1

    Поиск сложных закономерностей!
    Как просто изложен смысл нейросети! Браво!

  • @РоманПирожков-ж6ж
    @РоманПирожков-ж6ж 2 года назад

    Это лучшее объяснение нейронных сетей, что я видел на просторах интернета. Спасибо!

  • @dirt5506
    @dirt5506 8 месяцев назад

    Вы первый кто интересно объясняет! Очень круто)))

  • @vladislav6779
    @vladislav6779 5 лет назад +20

    9:38 «остался лишь один вопрос»
    Нет, осталось пару сотен вопросов после этого видео
    Но видео было понятное, спасибо!

    • @ДмитрийКоробченко-л2й
      @ДмитрийКоробченко-л2й  3 года назад +6

      Будет серия роликов на тему, постараемся ответить на всё по максимуму

    • @Арган-и6з
      @Арган-и6з Год назад +1

      😂👍Спасибо за юмор! Но в моём случае это именно так.

  • @ADLCom
    @ADLCom Год назад

    Меня всегда удивляют люди которые могут сложные вещи объяснить простыми слова! Лайк и подписка обязательно!

  • @ShaburovThe
    @ShaburovThe 5 лет назад +6

    Спасибо. Любопытно узнать в вашем изложении про рекуррентные нейронные сети

  • @olossg
    @olossg 5 лет назад +6

    спасибо, ждём дальше)

  • @kraych6333
    @kraych6333 5 лет назад +9

    не зря ждал видосы

  • @ЕвгенийБондарев-к7ф
    @ЕвгенийБондарев-к7ф 16 дней назад

    Благодарю вас , очень хорошее объяснение🎉

  • @kraych6333
    @kraych6333 5 лет назад +9

    хочу больше информации, ты лучший

  • @ЕленаКовалёва-н3ж

    Спасибо огромное! Очень простое и понятное объяснение!

  • @Dmitrii-Zhinzhilov
    @Dmitrii-Zhinzhilov 2 месяца назад

    Дмитрий, благодарю! 👍🤝

  • @nikolaygertsog5702
    @nikolaygertsog5702 2 года назад

    Шикос, благодарю за видео!!
    Всем добра)

  • @back88
    @back88 10 месяцев назад

    Вы просто отличный и шикарный. Молодцы!

  • @santaux
    @santaux 4 года назад +4

    Очень круто и понятно! Спасибо!

  • @ЭдуардБеспалов-т1в

    Каковы Ваши прогнозы на развитие нейросетей в ближайшие годы? Меня интересует конкретный вопрос, могут ли они внезапно начать представлять опасность для человека? На каком-то этапе развития.

    • @Tornado-ln7fq
      @Tornado-ln7fq Год назад

      Нет не когда,не когда более,все что там сказано это математическая модель,не чего более она не не сет как влажные мечты математиков,которые решили прибрать к себе И.И(Искусственный интеллект). Но заверю вас,это модель их модель,только и может гонять числа,в абстрактном виде.И слава богу,это так не работает. Что касается самого ИИ то какую логику задать ему и задачи,так и будет. Но до нормальной работы,и решения сложных зада, ИИ еще очень далеко))

  • @SoilShift
    @SoilShift 2 года назад

    Спасибо за видео. Не ожидал, что пойму. Буду практиковаться)

  • @djdikitiki4916
    @djdikitiki4916 2 года назад

    Я уверен канал стрельнет, буду здесь до миллиона

  • @theodoretryman4289
    @theodoretryman4289 2 года назад +1

    Контент просто бомба!!!! 👍👍Дмитрий, я снимаю шляпу за такое видео. Спасибо вам большое и успехов вам 👏👏👏👏

  • @_Al_Kuznec
    @_Al_Kuznec Год назад +1

    Дмитрий, спасибо за ролик! Подскажите пожалуйста, можно ли понимать W как какой то вероятностный процент, например да=100%, не знаю=50%, нет=0%???

  • @Festfull
    @Festfull Год назад

    Удивительно мало просмотров и лайков для столь качественного контента

  • @_Andrew_Parker_
    @_Andrew_Parker_ 4 года назад +3

    Почему так мало лайков? Супер же объясняет!

    • @svbdaa
      @svbdaa 2 года назад

      Потому, что для понимания его объяснений нужно иметь предварительный базис. А он мало у кого есть. Это видео не для новичков.

  • @Stepanjuk
    @Stepanjuk 4 года назад +2

    Посоветуйте литературу пожалуйста? Что это за книжки у вас на столе такие интересные? Было бы очень интересно посмотреть разбор литературы от вас. Видео 🔥🔥🔥!!!

  • @sergiikulishov76
    @sergiikulishov76 2 года назад

    Благодарю за качественную информацию!!! Графовые нейросети в принятии решений в психологии, медицине (электрической нестабильности сердца), салкивается в этом направлении?!

  • @АнастасияШвецова-ь4ю
    @АнастасияШвецова-ь4ю 4 года назад +2

    Большое спасибо! Очень помогли!

  • @ІлляЛарюшин
    @ІлляЛарюшин 2 года назад +1

    а как заставить нейронку сканировать любые детали с фото и отобразить их 3д форму например в блендере.

  • @alexanderz9622
    @alexanderz9622 4 года назад +2

    Очень помогло. Спасибо!

  • @MaximIsajev
    @MaximIsajev Месяц назад

    Из чего состоит нейрон? Физически как это выглядит? Из чего его лепят? Какие материалы используются?

  • @ОлегМагомедчансан
    @ОлегМагомедчансан 2 года назад

    Красава мужик
    чотко объясняешь

  • @Microname1000
    @Microname1000 3 года назад +1

    Может ли нейронная сеть решить такую задачу ?
    Известно, что товары в поисковой выдаче на Вайлберриз ранжируются по показателю R = x1v1 + x2v2 + x3v3, где x1 - рейтинг товара, x2 - количество продаж за неделю, x3 - остаток на складе, а v - это соответственно веса каждого их показателей. Показатель R также известен. Как зная R, x1, x2 и x3 каждого товара из результатов выдачи вычислить веса ?

  • @qdnr
    @qdnr 2 года назад

    Подпишусь-ка я пожалуй, в 10 класс пошёл и решил проект по нейроным сетям забабахать, вот теперь буду их и изучать до "идеала"

  • @GrigoryGladyshev
    @GrigoryGladyshev 5 лет назад +2

    Димон, классное видео

  • @kraych6333
    @kraych6333 5 лет назад +5

    брат, не пропадай(

  • @ZaharAbramovich
    @ZaharAbramovich 5 лет назад +1

    Про функцию активации пожалуйста поподробнее. Почему она важна? Хочу три кейса разных функций, чтобы почувствовать разницу..

    • @ДмитрийКоробченко-л2й
      @ДмитрийКоробченко-л2й  5 лет назад +4

      Будет отдельный ролик про функции активации (какие бывают, чем отличаются, какие зачем нужны). Но коротко отвечу про важность НЕЛИНЕЙНОЙ функции активации вообще.
      Умножение на матрицу и прибавление вектора - это линейная операция (линейное преобразование). Так выглядел бы слой без функции активации. Два подряд линейных преобразования эквивалентны ОДНОМУ (какому-то другому) ЛИНЕЙНОМУ преобразованию. Чтоб такого не было, необходимо МЕЖДУ двумя линейными преобразованиями вставить НЕЛИНЕЙНОЕ преобразование (в нашем случае - функцию активации). Более формальный пример: представьте, что функция активации линейна (это функция вида F(x) = ax+c, то есть её график - прямая линия), или её совсем нет (a=1, c=0). Теперь, рассмотрим пару соседних слоёв нейросети: первый: h = F(Wx + b); второй: y = F(Vh + d). W и V - матрицы, b и d - вектора смещений. Если подставить одно в другое, получим y = F(V(F(Wx + b) + d). Если бы F не было, или если бы это была линейная функция [F(x) = ax+c], то можно было бы раскрыть скобки, привести подобные и получить, что y = Tx + s, где T - какая-то другая матрица, а s - какой-то другой вектор. Это значит, что два слоя эквивалентны некоторой однослойной нейросети. А однослойные сети могут работать только с очень простыми данными.

    • @ZaharAbramovich
      @ZaharAbramovich 5 лет назад

      @@ДмитрийКоробченко-л2й спасибо за разъяснение.

  • @mirek__
    @mirek__ 2 года назад

    Не плохо. Быстро. Понятно. Где-то я просел в скалярных произведениях векторов ) А где там вектора ?

  • @РубинСтаврополь-у9м

    Дмитрий здравствуйте. Прошу совета, как у специалиста. Нейронок очень много, pytorch, tensor flow, opencv, numpy и ещё кучи и кучи.
    Есть задача. Нужно делать ретушь фото. Из некрасивого фото делать так сказать глянцевую конфетку. Нужно написать и обучить нейронку по уже готовым работам.
    Какая нейронка для этого лучше подойдёт? Что лучше изучать?

  • @fiftyshadesofgrey1991
    @fiftyshadesofgrey1991 4 года назад +1

    Подскажите пожалуйста какой тип архитектуры используется для обучения сети при создании Deep Fake медиа

    • @Lud_esperante
      @Lud_esperante Год назад

      При создании глубоких поддельных носителей обычно используется архитектура генеративно-состязательной сети (GAN).

  • @Saber_Toothed_Rus
    @Saber_Toothed_Rus 5 лет назад +1

    Дмитрий, я тут собираю машину для deep learning и уперся что к большинству северов более 4-х GPU не подключить по 16х шине. Есть выход - старые реки Nvidia Tesla S2050 для подключение 4-х карт на 2 слота 16х которые я разобрался как доработать для установки любых других GPU, но они ограничивают обмен с картами шиной 16х 2.0 и поверлимит в 225 Вт.
    Выход - переход к кластерным системам с большим количеством узлов объединенных на 10 GBE каналах, у Делла есть хорошие платы серверных нод со встроенными парными 10 ГБе на меди. Но вот как раскидать единую сеть по узлам кластера и обеспечить ее взаимодействие? Есть аналоги библиотеки MPI кластерной но применительно в CUDA-deep learning? Или сеть может оставаться единой только в пределах одного узла с общим полем памяти и CPU-GPU и на кластерные узлы разделяться не может?

    • @Lud_esperante
      @Lud_esperante Год назад

      Существует несколько подходов к развертыванию системы глубокого обучения в кластере. Один из подходов заключается в использовании среды распределенных вычислений, такой как Apache Spark, которая позволяет легко распределять рабочие нагрузки между несколькими узлами. Другой подход заключается в использовании распределенной среды глубокого обучения, такой как Horovod или Pytorch. Эти платформы предоставляют API для распределенного глубокого обучения, что позволяет легко распределять рабочую нагрузку между несколькими узлами. Кроме того, вы можете использовать стратегию развертывания на основе контейнеров, такую как Kubernetes, которая позволяет запускать несколько экземпляров модели глубокого обучения на нескольких узлах. Наконец, если ваша модель глубокого обучения достаточно велика, вы можете разделить ее на несколько подмоделей, каждую из которых можно запустить на другом узле.

  • @nadyapolovinkina9760
    @nadyapolovinkina9760 4 года назад +2

    А можно видео прям конкретно с примером? :) Чтобы были цифры, а не буквы
    И можно строить НСеть с вещественными и со словами? Например, на вход подаются и числа, и слова (болен/не болен) допустим

  • @shtorm314
    @shtorm314 Год назад

    Асалам Алейкум, здравствуйте. посоветуйте пожалуйста где обучиться .Есть университет Искусственного интеллекта о котором слышал , обучение стоит денег, но сфера такая что от наставников многое зависит .. Заранее благодарю.

  • @alexperov1539
    @alexperov1539 4 месяца назад

    откуда появилась матрица 3*3.?Для чего нужно смещение?

  • @ЮрийЛоргин-н2у
    @ЮрийЛоргин-н2у Год назад +1

    Очень интересно, но непонятно😁

  • @Tolyan97kartofan
    @Tolyan97kartofan Год назад

    Очень круто!

  • @АламираКхис
    @АламираКхис Год назад

    А можно было показать это видео до того как подписался на интенсив?
    Хотела бы написать, что ничего не поняла, но поняла, что все сложно...

  • @Kvant_Jack
    @Kvant_Jack 4 года назад +1

    Просто респект за видео ! Если вы тоже глянули сия видос благодаря Дроидер-лосось коммент))

  • @МаксимАнтонов-ш6ъ

    Всё понятно но есть 1 вопрос что такое вектор смещения как то непонял

  • @АндрейРожнов-ш9к
    @АндрейРожнов-ш9к 5 лет назад

    спасибо! очень доходчиво!
    Как можно с вами связаться?

  • @MRbeast1983
    @MRbeast1983 5 лет назад +2

    А когда следующее видео? Про то как обучать и брать w и b? :)

  • @kuaranir2440
    @kuaranir2440 3 года назад +1

    6:31 почему вектор W со знаком транспонирования?

    • @Lud_esperante
      @Lud_esperante Год назад

      Вектор W используется в матричных операциях, таких как умножение матриц и умножение вектор-матрицы, где требуется транспонирование вектора. Например, векторно-матричное умножение wT A будет транспонировать w, умножая каждый элемент w на каждый столбец в A, чтобы получить новый вектор. Транспонирование необходимо для того, чтобы произведение двух матриц было правильно определено и давало правильный результат. Кроме того, транспонирование вектора можно использовать для лучшего понимания структуры данных в векторе.

  • @playwitharco3749
    @playwitharco3749 4 года назад +1

    Я слышал, что важны для обучения такие разделы, как: линейная алгебра и теория вероятностей. Но так и не понял, зачем они нужны. Особенно про линейную алгебру

    • @ДмитрийКоробченко-л2й
      @ДмитрийКоробченко-л2й  3 года назад

      Тензоры, матрицы, векторы, матричные и тензорные операции -- это всё линейная алгебра и это всё используется в нейросетях. А теория вероятностей и статистика имеет большое пересечение с машинным обучением.

  • @Mike_Isakov
    @Mike_Isakov Год назад

    Очень хороший ролик

  • @МихаилПоликарпов-ф4м

    подскажи пожалуйста,какую первую нейронную сеть можно создать для тренировки (я начинающий в этом деле),сам смотрю в сторону аппроксимации функций

    • @ДмитрийКоробченко-л2й
      @ДмитрийКоробченко-л2й  3 года назад

      Аппроксимация функций -- хороший пример для простой задачи регрессии. Если говорить о задаче классификации, то вот довольно простой пример: ruclips.net/video/xMz7XSaqdRA/видео.html

  • @olegvertual6787
    @olegvertual6787 3 года назад

    Круто , всё понятно

  • @NationalVerrater
    @NationalVerrater Год назад

    Одни хвалебные комментарии.. а никто не заметил, что автор не сказал, что именно является нейроном в искусственной нейронной сети? Или все это знают? Мне вот именно это интересно. Объяснять надо начинать от самого основного.

  • @Deniseich
    @Deniseich 5 лет назад +17

    "нихуя не понял :) но очень интересно"
    лично мне было бы намного понятнее если бы мне пошагово показали вначале как обучается самый простой вид сети. главное - пошагово - то есть какая именно циферка берется и на что умножается и в каком виде хранятся эти данные. а затем уже - как эти данные использует нейросеть - пошагово - какая циферка берется, с какой перемножается.
    образно говоря на вопрос "как доехать на машине от дома до магазина" вы ответили "ну там налево, тут направо и там парковка", а мне надо - вышел из подъезда, нашел ключ в кармане, нажал кнопку "открыть машину", открыл дверь, сел, закрыл дверь, вставил ключ в замок зажигания, завел, нажал и держишь тормоз, переключил коробку в D, отжал тормоз - машина покатилась, крутишь руль, смотришь чтобы спереди не было препятствий, поворот руля вправо = поворот машины вправо, затем руль надо возвращать в начальное положение для того чтобы машина ехала прямо. и т.д.
    понимаете? вы объяснили для тех кто уже много лет водит машину, а мне надо чтобы вы объяснили для тех кто ни разу не садился за руль машины.
    при этом я программист уже 15 лет как и все равно такое объяснение мне видится как набор фраз "ну там веса и перемножается один нейрон на другой, ну понял?" из чего ничего не понятно как именно одна циферка на входе преобразуется в циферку на выходе.
    вот берем число 2 - оно в первом нейроне, дальше на что конкретно оно перемножается и почему? нужен полный путь который проходит это число.
    типа - "2 умножается на 3 - это вес коннекта к первому нейрону первого слоя. 3 берется оттудато и потому то. 3 затем перемножается на то-то и идет на выход и там получаем например 10". вобщем нужны не иксы игрики биасы и сложные схемы всего этого а объяснение реального пути числа в простых ЧИСЛАХ. 2*3*5=25 и объяснение каждого числа и каждого знака

  • @dimassmirnoff6378
    @dimassmirnoff6378 4 года назад +1

    Хорошее видео

  • @Механизмы-д8ц
    @Механизмы-д8ц 3 года назад

    Вы нереально крут

  • @ДмитрийБахмацкий-з6щ

    Спасибо!

  • @timurotube
    @timurotube 8 месяцев назад

    что такое softmax?

  • @sledleo
    @sledleo Год назад

    Чувак, а можно без заумных терминов и самосабой разумеющихся костылей, ведь все просто если не усложнять.
    Сначала достаточно показать самое противное действие, потом еще пару и в результате задачка решена. Потом добавив пару улучшение - получаем искомый результат.
    Но на видео все идет с перескоком и с заумностями....

  • @david_shiko
    @david_shiko Год назад

    Классно, но можно лучше. Я едва помню что такое матрицы, вектора, ... Для не студента тяжеловато.
    Больше понял интуитивно, с точки зрения логики, чем терминов.

  • @motorof1295
    @motorof1295 4 года назад

    Про смещение не понял bias. Что это за параметр и зачем он в формулу вводится?

    • @Lud_esperante
      @Lud_esperante Год назад

      Это параметр смещения, а параметр смещения - это числовое значение, добавляемое к входным данным нейронной сети. Он используется для того, чтобы выходные данные модели всегда находились в желаемом диапазоне. Обычно для него устанавливается небольшое положительное или отрицательное значение, что помогает предотвратить слишком большое или слишком маленькое значение выходных данных модели. Параметр смещения помогает гарантировать, что выходные данные модели всегда находятся в желаемом диапазоне, и его можно настроить для оптимизации точности модели.

  • @Not_creative_beats
    @Not_creative_beats 7 месяцев назад

    что такое веса...?

  • @КотофейМатроскин-д4ч

    Основной алгоритм нейронных сетей-это принцип динамичного сравнения, чем больше показателей для сравнения, тем шире спектр применения анализируемого показателя.

  • @arka1931
    @arka1931 Год назад

    все так было понятно , пока резко тема не переключилась на линейную алгебру

  • @olekollo7875
    @olekollo7875 2 года назад

    где брать веса?

    • @Lud_esperante
      @Lud_esperante Год назад

      Это обучение, поэтому генерируются, потому что никто не знает, какое число необходимо, чтобы обучить нейронную сеть.

  • @hello_world_zz
    @hello_world_zz 3 года назад

    Спасибо

  • @Erwin_Anderson
    @Erwin_Anderson 3 года назад +1

    Ничего не понял но очень интересно )

  • @mRelby13
    @mRelby13 4 года назад +1

    Как ни странно, видео получилось очень даже интересным и в какой-то степени даже более понятным, нежели то, что видел ранее.
    Но тем не менее, хотелось бы больше примеров, реальных примеров на каком-то языке программирование. А что ещё более важно: было бы круто, если бы эти примеры были пошаговые.
    p.s. канал заброшен? :(

  • @rednil8242
    @rednil8242 3 года назад

    Классное видео, но не очень понятно, зачем нужна нелинейная функция на каждом нейроне

  • @sergiyyegorushkin6586
    @sergiyyegorushkin6586 4 года назад

    Всё отлично, только не понял чему ровны весы(

    • @ДмитрийКоробченко-л2й
      @ДмитрийКоробченко-л2й  3 года назад

      Веса получаем во время обучения: ruclips.net/video/uWd9nyn0ql8/видео.html

    • @Lud_esperante
      @Lud_esperante Год назад

      Веса в нейронной сети можно получить несколькими способами. Один из методов заключается в случайной инициализации весов небольшими значениями в начале обучения. Другой метод заключается в использовании предварительно обученной модели, в которой используются веса, уже обученные на большом наборе данных. Также можно использовать алгоритм инициализации весов, такой как Xavier или He et al., для инициализации весов. Наконец, можно использовать алгоритм оптимизации, такой как обратное распространение ошибки или стохастический градиентный спуск, для обучения весов, но обычно все генерируется.

  • @prinshamlet5942
    @prinshamlet5942 5 лет назад +1

    Можно и попроще, хотя + за попытку)

  • @АлексейДёмин-г7т
    @АлексейДёмин-г7т 4 года назад

    разве b не должно иметь три строки а не четыре на 7:13?

    • @ДмитрийКоробченко-л2й
      @ДмитрийКоробченко-л2й  3 года назад

      Нет, именно четыре. Количество значений в векторе смещений такое же, как и количество нейронов (у нас 4 нейрона). А если через алгебру, вектор x (размерность 3) умножается на матрицу W (4x3) -> получается промежуточный вектор размерности 4, и уже к нему прибавляется вектор b (тоже размерность 4)

  • @alexnedelin7646
    @alexnedelin7646 Год назад

    почему функцию активации на выходе из последнего слоя применять нет смысла?

  • @ДмитрийБеспалов-ы4и
    @ДмитрийБеспалов-ы4и 4 года назад +1

    круто

  • @vadimkuzmin7525
    @vadimkuzmin7525 2 года назад

    Это все теория. Нужно показать на примере! А то одни формулы).

  • @olegvertual6787
    @olegvertual6787 3 года назад +3

    Надо глубоко изучать математику

    • @SoilShift
      @SoilShift 2 года назад

      на самом деле нет. я даааааалеко не математик, но тем не менее, хоть и не полностью, но понял суть. для того, чтобы понять то, о чем говорится в видео, быть математиком не обязательно. по сути нам на пальцах разложили базовый принцип(формулу, если угодно) работы нейросети, нужно лишь верно все сопоставить и наслаждаться результатом

  • @ТипичныйСидорович
    @ТипичныйСидорович 2 года назад

    а если нейросеть-генератор?

  • @deodatus7202
    @deodatus7202 Год назад

    Вот мы и встретились... Задача, которая интересна, но для которой нужна математика...

  • @pie4928
    @pie4928 Год назад

    4:30 мне кажется это трехслойная сеть :D

  • @bogdan_ov
    @bogdan_ov 4 года назад +1

    6:35 пауза, закрыть видео, закрыть вкладку, закрыть браузер, выключить пк, выбросить пк на помойку

  • @Volcolak83
    @Volcolak83 2 года назад

    Жестикуляция как раньше в новостях))

  • @DJVil777
    @DJVil777 3 года назад +1

    Вопросов, на самом деле много. Но вот главный у меня это "почему это работает?" Т.е. какие вообще есть математические предпосылки, что это должно работать, а не давать всякую ерунду. Есть ли какая-нибудь научная литература на этот счет? Можно и на английском

  • @Sheriff-tg
    @Sheriff-tg 3 года назад +1

    Вин знав про игру в кальмара за раньше 0:31

  • @sytyluipes
    @sytyluipes Год назад +1

    здравствуйте программисты из мгсу

  • @14types
    @14types 2 года назад

    Объяснение для тех, кто уже знает. А кто не знает, ничего не поймет. Тут как мем, где сову нарисовать.

  • @ІлляЛарюшин
    @ІлляЛарюшин 2 года назад

    настолько чисто разжовано что даже я, со средним образованием все понял. Хотя когда брал учебник нелинейной алгебры аж глаза из орбит выкатывались.