Comment choisir m ?

Поделиться
HTML-код
  • Опубликовано: 29 янв 2025

Комментарии • 175

  • @antoinecollewet4563
    @antoinecollewet4563 3 года назад +11

    J'avais regardé cette vidéo au hazard un soir où je m'ennuyais, il y a une 1 semaine. Aujourd'hui contrôle de maths, et exactement cet exercice ! Merci beaucoup prof !

    • @hedacademy
      @hedacademy  3 года назад +4

      C’est fou ça! J’espère que tu auras tous les points 😁

  • @Gabs2345
    @Gabs2345 3 года назад +32

    Les équations à paramètre sont intimidantes au début mais une fois qu'on les a comprises ça devient super intuitif et intéressant à résoudre

    • @fatoumataba2849
      @fatoumataba2849 2 года назад +2

      Je confirme car je croyais que c'était difficile ms telle n'est pas le cas

  • @MILLIONNAIRE-uf6lx
    @MILLIONNAIRE-uf6lx 2 месяца назад

    le meilleur professeur de math que je connais, incontestable. il explique le math avec une simplicite incroyable, priceless. pour paraphraser einstein avec lui, le math est simple et non simpliste. merci professeur

  • @laika436
    @laika436 3 года назад +8

    Excellent !... Que dire de plus, c est l enseignement parfait.

  • @UnInconnuPieux
    @UnInconnuPieux 3 года назад +31

    Merci tu régale en début d'année en math (chuis en 1ere) on a démarré les équations du 2d degré et au début malgré que de base chuis bon en math bah j'y comprenais rien alors que là j'ai pu tout comprendre PCQ ta laissé aucune place aux doutes et ta tout bien expliqué donc bilan----> MERCI C UN EXCELLENT TAFF COMME D'HAB, PS, excellente ta vidéo sur l'interro surprise !!!!!!!!!!!

  • @vinuxcyldrik
    @vinuxcyldrik 3 года назад +1

    C'est clair que ce n'était pas un chalenge vraiment terrible ... maaaaiiis, trouver les solutions d'un polynôme du second degré pour savoir quels sont les valeurs de m pour que le polynôme d'origine (si j'ose dire) n'admette qu'une seule solution, c'était plutôt original et sympa à résoudre (pour peu qu'on apprécie un minimum les maths). Sachant en plus qu'il fallait construit ce polynôme à résoudre (sinon c'est trop facile).
    Au final, c'est ce que j'aimais bien dans les maths quand j'étais à l'école (ou en physique aussi) : avoir un problème qui a l'air assez compliqué au premier regard, et qui se résout petit à petit en décortiquant les éléments qu'on nous donne ... finalement comme un jeu de logique, ou un puzzle. Toujours agréable à résoudre dans le genre.

  • @alfredokepi5468
    @alfredokepi5468 3 года назад +11

    J’adore ces équations. Encore !

  • @Magicarcher_07
    @Magicarcher_07 2 месяца назад

    Bonjour , j’aime vrm votre chaîne ,merci pour les efforts que vous y consacrez

    • @hedacademy
      @hedacademy  2 месяца назад

      Bonjour. Avec plaisir. Merci pour le message

  • @albertdupond7399
    @albertdupond7399 3 года назад +10

    dans la deuxième partie, avant de développer delta prime
    on peut utiliser l'identité remarquable :
    (1-n²) = (1+n)(1-n)
    puis mettre en facteur (n+1)
    et trouver ainsi les deux racines.

    • @kanail3178
      @kanail3178 2 года назад

      J'ai rien compris

    • @TheBroxholm
      @TheBroxholm Год назад

      Tu veux dire avant de développer le premier Delta, parce que ainsi tu n'as même pas besoin du Delta prime. J'ai fait ça aussi, ça m'a étonné que ça ne soit pas dans la vidéo.

  • @yiyuaneclair9513
    @yiyuaneclair9513 3 года назад

    Super vidéo!! Merci encore, bon certes ce n'est du niveau de mes enfants mais je m'éclate tout seul et mon fils est curieux donc ce n'est que du bonheur.
    T'es un super prof!!! Bravo!!
    my 2 cents

  • @footballplus7161
    @footballplus7161 3 года назад +1

    Bon travay se sa selman mwen ka di paske ou vrèman edem, men kounyeya mwen tèmine etid klasik mwen san Franchman ou konte anpil nan reyisit mwen. Mwen pa lekòl klasik ankò non men, sa pa anpechem toujou ap gade videyo w yo, good job.

  • @emmanuelle6346
    @emmanuelle6346 2 месяца назад

    merci beaucoup!! la vidéo est très claire et m’a beaucoup aider

  • @franck1806
    @franck1806 2 года назад

    merci pour ces révisions, à 66 ans cela m'enchante !

  • @johnsonpushparajalingam2795
    @johnsonpushparajalingam2795 3 года назад +2

    Merci pour ce challenge et cette vidéo. Moi qui pensait qu’il y avait aussi un factorisation challenge inclus.
    Pas besoin du delta’, en factorisant par m+1 on obtenait (m+1) (m+1 - 4(1-m))= 0
    (m+1) (5m-3)=0
    S m= -1 ou m=3/5

  • @ThePolygames
    @ThePolygames 3 года назад +3

    Celle là elle était marrante, c'est sympa ça sort de l'ordinaire !
    Et puis content de voir que j'ai pas tout oublié depuis le lycée :xd

  • @jambondebayonne7839
    @jambondebayonne7839 3 года назад

    de la bombe tes explications!!! encore stp, encore !!!

  • @landonmichael196
    @landonmichael196 3 года назад +1

    J'adore ce genre de probleme.ca fait reflechir,j'aimerais qu'il y en ait plus des problemes de ce genre sur votre chaine .1000 merci Monsieur,Mon interet pour les math ne s'eteint pas grace aux contenus que vous proposez.

  • @lucasp3894
    @lucasp3894 3 года назад +1

    Merci pour votre chaîne. J'ai trouvé par une méthode différente qui ne demande pas de connaître la formule du delta :)
    Si x² + x(m+1) + 1 - m² = 0 n'admet qu'une seule solution, alors x² + x(m+1) + 1 - m² peut aussi s'écrire (x + A)(x + A) = x² + 2Ax + A².
    Par identification :
    2A = m + 1 ssi A² = (m + 1)²/4
    et
    A² = 1 - m² = (1 + m)(1 - m)
    Donc,
    (m + 1)(m + 1)/4 = (m + 1)(1 - m)
    Si m + 1 = 0, alors m = -1
    Sinon,
    (m + 1)(m + 1)/4 = (m + 1)(1 - m) ssi (m + 1)/4 = 1 - m ssi m + 1 = 4 - 4m ssi m = 3/5
    Qu'en pensez-vous ?

  • @dadyfrancoismendy9412
    @dadyfrancoismendy9412 3 года назад

    Merci beaucoup pour ces bons rappels et cours...

  • @messoremimoon2405
    @messoremimoon2405 3 года назад

    C'est mon petit rendez vous de math :))))) Question : Est ce que tu vas faire des thèmes plus ardus ?

  • @triox3228
    @triox3228 3 года назад

    Je suis un ancien élève de MPSI/MP et je dois avouer que votre chaîne est une superbe ressource pour aider ou juste faire des maths au lycée.
    Vous êtes très pédagogue dans vos explications, c’est très plaisant et limpide à regarder.

  • @hectthorno584
    @hectthorno584 3 года назад +2

    Je n'ai pas fait de Delta de Delta.
    En fait j'ai laissé
    Delta sans développer
    Delta = (m+1)^2 - 4 (1-m^2)
    DELTA= (m+1)^2 +4(m^2-1)
    Et j'ai factorisé
    DELTA= (m+1)(m+1) + 4 (m+1) (m-1)
    DELTA= (m+1) [(m+1) + 4 (m-1)] = 0
    =>
    1) m+1 = 0 donc m1=-1
    ou
    2)
    m+1+4m-4=0
    m2= 3÷5
    Je commence à monter mon niveau avec la chaîne.😉 Merci

  • @Sporpion
    @Sporpion 3 года назад +9

    Un peu déçu que tu n'ai pas utilisé l'identité remarquable de 1-m2 :D. ça permettait de tout factoriser, et d'obtenir (1+m)((1+m) -4(1-m)) et donc (1+m)(5m-3) = 0, sans passer par le delta !
    Super vidéo dans tous les cas !!!

    • @floom4122
      @floom4122 3 года назад

      C'est vrai que ça aurait été plus simple
      Mais en l'occurrence ce n'était pas l'objectif de la vidéo je pense qu'il voulait montrer l'utilisation imbriquée des delta
      Ceci dit très bien trouvé la factorisation

    • @Sporpion
      @Sporpion 3 года назад +1

      @@floom4122 Je suis d'accord :), et effectivement sans le contexte ça peut paraître comme un reproche alors que pas du tout. C'était en référence à toutes les vidéos sur la factorisation. Mais je reviens pas sur la progression pédagogique qui est au top !

  • @abdesselambennour3875
    @abdesselambennour3875 3 года назад

    Merci beaucoup professeur. Salut du Maroc votre élève de 66ans

    • @hedacademy
      @hedacademy  3 года назад

      😊 merci pour la pensée

  • @muriellenkomaovagovolo870
    @muriellenkomaovagovolo870 Год назад

    Ça me servira beaucoup à mon prochain contrôle

  • @xsimox13
    @xsimox13 2 года назад +1

    Tu pouvais à une étape du delta factoriser par m+1 (-1 racine évidente) ce qui te donne direct : (m+1)*(m+1-4+4m) = (m+1)*(5m-3)

  • @florentlecloerec2310
    @florentlecloerec2310 3 года назад +4

    Pas besoin de calculer delta prime. On pouvait factoriser par m+1.
    Delta= (m+1)((m+1)-4(1-m)) car 1-m^2= (1-m)(1+m)
    Soit Delta=(m+1)(5m-3)

    • @javanuwamungu5824
      @javanuwamungu5824 3 года назад

      Exactement! J'ai en effet procédé ainsi. Mais toutes ces voies mènent à bon port!

  • @andremarchal7808
    @andremarchal7808 3 года назад

    Super ! C'est comme les charades à tiroirs ! ☺

  • @burningsora6511
    @burningsora6511 3 года назад +2

    Personnellement, je pense qu'on peut se passer du calcul du second discriminant en remarquant, avec le 5, le 2 et le -3, que -1 annule Delta, donc que m+1 est un facteur de Delta, et en déterminant l'autre facteur (5m-3), qui s'annule pour m=3/5.

  • @damiennortier8942
    @damiennortier8942 3 года назад

    pour ceux qui veulent : avec m = -1, on obtient x² = 0 donc x = 0 et pour m = 3/5, on obtient x² + 8/5x + 16/25 soit x = -4/5
    Question bonus : trouver la valeur De x pour que l'équation n'admette qu'une solution (pour m)
    Correction :
    X^2 + x(m+1) + 1 - m^2 = - m^2 + mx + x^2 + x - 1.
    Delta = x^2 - 4x^2 - 4x - 4 = - 3x^2 - 4x - 4
    Delta' = 16 + 48 = 64
    X1 = 2 et x2 = -2/3
    Et on peut vérifier :
    3*2^2 - 4*2 - 4 = 3*4 - 4*3 = 0
    3*(-2/3)^2 - 4*(-2/3) - 4 = 4/3 + 8/3 - 4 = 0

  • @Schlaousilein67
    @Schlaousilein67 3 года назад

    Sympa comme exercice !

  • @MrSplash
    @MrSplash 3 года назад

    Salut et merci encore pour tes vidéos je t'ai découvert par hasard et je suis tombé amoureux de ta passion de transmettre même si j'adore les math la je kiff apprendre pourtant ca fait 15 ans que je ne suis plus dans le circuit scolaire :)
    Question : est t'il possible de penser à mettre les formules à savoir par cœur en description a chaques vidéo stp :) ?

    • @hedacademy
      @hedacademy  3 года назад

      Hello. Merci pour ton retour 😊
      Très bonne idée des formules à mettre en description, j’y penserai à l’avenir 👍🏽

  • @grd4853
    @grd4853 3 года назад +1

    il y avait quand meme une méthode plus élégante.
    Ton polynome admet une seule racine si en realité les deux racines sont confondues, et qu'on peut le factoriser sous la forme (x+b)², c'est à dire sous la forme x²+b²+2b.
    On a donc 2b=m+1, et b²=1-m², et donc par association ([m+1]/2)² = 1-m².
    Il reste plus qu'a résoudre cette equation (equivalente à 5m²+2m-3=0)

  • @damiensen
    @damiensen 3 года назад +10

    "Delta est une arme assez puissante..." Je croyais qu'il parlait du rayon Delta dans le bras gauche de Cobra !!! Ah ah ah

  • @francoisruze9443
    @francoisruze9443 2 года назад

    Soit :
    (m+1)((m+1)-4(1-m))
    = (m+1)(m+1-4m)
    =(m+1)(5m-3)
    Deux solutions :
    m= -1
    m=3/5
    Plus court non 😜😜😜
    Cordialement et merci
    Pour tes cours , je me régale
    François RUZÉ
    BASTIA

  • @looou6615
    @looou6615 3 года назад

    MERCIIII
    Je viens tout juste de commencer ce chapitre avant hier (je suis en première)
    Et tu expliques teeeeellement bien c’est génial :)

  • @kakimiou6098
    @kakimiou6098 3 года назад

    Merci, j attends votre prochaine vidéo

  • @baptiste5216
    @baptiste5216 3 года назад

    Pour une version plus ardue de cette question on peut penser à une des questions qui à été poser aux olympiades de mathématiques d'Allemagne en 2001.
    La question étant :
    Considérant l'équation "x^4 - 20x^2 + q = 0, q est un réel
    Trouvez q tel que l'équation ai 4 solutions réels et que ses solutions forme une progressions arithmétique (c'est à dire que pour passer de la racine la plus petite à la deuxième plus petite il suffit d'ajouter une quantité r, et pour passer de la seconde plus petite à la troisième plus petite il faut également ajouter cette même quantité r etc...)"
    La question semble ardue mais en réalité celui qui sait résoudre une équation du second degrés possède tout les outils nécessaire pour résoudre la question.

  • @shtfeu
    @shtfeu 3 года назад +13

    Bonus:
    Pour m = -1 la solution de l'équation est x = 0
    Pour m = 3/5 la solution de l'équation est x = -4/5

    • @seeeden2338
      @seeeden2338 3 года назад

      C bien

    • @Lass-i9l
      @Lass-i9l 3 года назад +1

      On devrait avoir la même valeur pour Xo. Quelque soient les valeurs m1 et m2, Xo est la même.

    • @shtfeu
      @shtfeu 3 года назад

      @@Lass-i9l Ce que tu dis est faux. Je ne sais pas d'où tu sors ça...
      Regarde ce que vaut la racine double d'un polynôme dans le cas où Delta est nul : x = - b / 2a
      Dans notre exemple, cela donne : x = - (m + 1) / 2
      x est fonction linéaire de m, strictement décroissante, impossible d'avoir le même x pour deux m différents...

    • @Lass-i9l
      @Lass-i9l 3 года назад +1

      @@shtfeu celon l'énoncé l'équation doit admettre une seule solution et pas deux. Comme vous l'avez mis.

    • @philippenachtergal6077
      @philippenachtergal6077 3 года назад

      @@Lass-i9l Non. On te dit de choisir m pour que en remplaçant m par sa valeur dans l'équation en x, cette équation n'aie qu'une seule solution.
      Rien ne dit que chaque m doit amener au même x.

  • @hyllyus6140
    @hyllyus6140 3 года назад

    Excuse moi mais je connais pas toutes les notions est-ce qu'il existe un site avec le programme dessus ?

  • @gabinproisy1779
    @gabinproisy1779 3 года назад +1

    Ca serait possible une vidéo qui démontre les formules que vous utilisez, ( si elle n'existe pas déjà mais j'ai pas vu ) je pense que ça serait plus simple pour les comprendre et donc pour les réutiliser au besoin

    • @sebseb8877
      @sebseb8877 3 года назад

      Je ne crois pas avoir vu sur cette chaîne une démonstration de la valeur du discriminant (DELTA=b^2 - 4ac)
      Voilà le lien vers la vidéo d'un autre prof, sympa aussi !
      ruclips.net/video/6FEqtVWCnGQ/видео.html

    • @gabinproisy1779
      @gabinproisy1779 3 года назад +1

      @@sebseb8877 excellent merci beaucoup

    • @sebseb8877
      @sebseb8877 3 года назад

      @@gabinproisy1779
      Je t'en prie.
      Sa chaîne est sympa aussi. Et il me fait bien marrer !

  • @rkaf1944
    @rkaf1944 3 года назад

    Merci heda, pourriez-vous nous faire un peu de proba niveau terminale spe math merci encore pour ce que vous faites !!

  • @younesbenaissa97
    @younesbenaissa97 3 года назад

    Tu régales merci

  • @niavlys1980
    @niavlys1980 3 года назад

    Bonsoir, vous pouvez être fier de vous, et j'espère que vos élèves le sont également.

  • @Elored
    @Elored 3 года назад

    C'est fou, 13 ans après mon bac alors que je bosse dans un bureau d'études depuis des années je me rend compte que j'avais complétement oublié l'existence de cette histoire de delta et que j'en ai jamais eu besoin une fois sorti du système scolaire hahahaha

  • @ybart10
    @ybart10 3 года назад

    Dans la première partie on aussi dire que pour que l'équation n'admette qu'une seule solution, cela revient à dire qu'elle peut s'écrire sous la forme factorisée (x - m+1/2)2. Cette forme doit donc être égale à la première, ce qui amène aussi à l'équation de ∆' (qui peut aussi se factoriser en reconnaissant la racine évidente -1 comme cela a été dit dans d'autres commentaires).

  • @dumasyann
    @dumasyann Год назад +1

    Au calcul du premier delta, ce n'est pas plus simple de factoriser par (m+1) en remarquant que 1-m² = (1+m)(1-m) ? on se retrouve ainsi avec l'équation (m+1)(5m-3)= 0 , m = -1 ou 3/5 et pas besoin de calculer un second delta.

  • @yadusolparterre
    @yadusolparterre 9 месяцев назад

    super vidéo mais encore une fois, ce serait vraiment utile de vérifier tes solutions

  • @lameuerte
    @lameuerte 3 года назад

    super vidéo !

  • @mathematrice
    @mathematrice 3 года назад +2

    Belle vidéo ! J'avoue en seconde quand je devais calculer un delta dans un delta, ça me perturbait, mais après on s'y habitue ;)

  • @chbl-zy1vv
    @chbl-zy1vv 3 года назад

    j'ai 45ans et je trouve cool de refaire des exo de maths
    c'est grave docteur ?

  • @ArmelleBIFOUTOU
    @ArmelleBIFOUTOU 6 месяцев назад +1

    Dans le cas ou m admet deux solutions comment faire ?

  • @pulp2560
    @pulp2560 3 года назад

    Tiens bizarre, je n'avais aucun souvenir de cette notion de Delta.
    Je n'ai pourtant pas autant séché les cours de math durant le lycée.
    Sinon à quand les intégrales ?

  • @denisdenis-pt3co
    @denisdenis-pt3co 3 года назад

    c'est vicieux de se dire que pour qu'il n'y ait qu'une solution, il y a deux solutions ^^
    (mais pas à la même chose, on est d'accord !)

    • @jeanbonfromage9466
      @jeanbonfromage9466 3 года назад

      Pourrais tu m’expliquer c’est pas intuitif comme raisonnement 😅
      Merci!

    • @denisdenis-pt3co
      @denisdenis-pt3co 3 года назад

      @@jeanbonfromage9466 mieux que lui ? Non clairement pas 😁
      Il y a deux valeurs de m qui permettent que l'équation x2+machin =0

    • @jeanbonfromage9466
      @jeanbonfromage9466 3 года назад

      @@denisdenis-pt3co alors pourquoi on nous demande une seule valeur ?

    • @denisdenis-pt3co
      @denisdenis-pt3co 3 года назад

      @@jeanbonfromage9466 sur le tableau, "valeurs" est au pluriel

    • @jeanbonfromage9466
      @jeanbonfromage9466 3 года назад +1

      @@denisdenis-pt3co 🤦‍♂️ merci beaucoup j’avais pas vu ! désolé de t avoir fait perdre de ton temps

  • @MariamMsf-k9i
    @MariamMsf-k9i Год назад

    J'adore 🎉

  • @sebastien5048
    @sebastien5048 3 года назад

    Quand vous calculez les solutions de la deuxième équation, vous écrivez "-b+-racine(delta')/(2a)", mais du coup il faudrait plutôt mettre du b' et du a', non ?

  • @lazaremoanang3116
    @lazaremoanang3116 3 года назад

    Quand je vérifie dans ma tête, je me rends compte que c'est ça, est-ce que je vais pouvoir suivre la vidéo avec mes programmes, les programmes télé et la nourriture?

  • @oliviert24
    @oliviert24 3 года назад

    Que ça fait du bien de revenir aux fondamentaux !!! Merci

  • @judehugarlnzienguinziengui2084
    @judehugarlnzienguinziengui2084 3 года назад

    super!!!!!!!
    pile au bon moment!

  • @philippegibault6889
    @philippegibault6889 3 года назад +3

    On peut faire mieux avec a2 - b2 = (a + b)(a - b).
    Effectivement
    d = (n + 1)2 - 4 (1 - m2) = (m + 1)2 -4 (1 - m) (1 + m) = (m+1) (m + 1 - 4 + 4m) = (m + 1) (5m - 3).
    De plus, lorsque l'on a 5 m2 + 2m -3 = 0, on a une racine évidente: -1,
    5m2 + 2m - 3 = (m + 1) (5m - 3).
    On trouve donc -1 et 3/5

  • @jflatour2010
    @jflatour2010 3 года назад

    Attention: il faut une parenthèse qui entoure 1-m^2 (le c) dans l'équation de départ!

  • @AArrakis
    @AArrakis 3 года назад

    Yeah! En 1 mn : pour que X1 = X2: b2-4 ac doit être égal à zéro, a=1, b=m+1, c=1-m2 =====> m=-1 ou m=5/3. ENCORE, ENCORE! :-))

  • @damiennortier8942
    @damiennortier8942 3 года назад

    Autre méthode : on veut qu'une solution. Donc delta = 0 et la solution est-b/2a = -(n+1)/2. x^2 + x(n+1) + 1 - n^2 = [x + (n+1)]^2 = 0.
    On développe : x^2 + x(n+1) + 1 - n^2 = x^2 + 2x(n + 1) + (n+1)^2
    On réduit et on met tout du même côté, on obtient (n+1)^2 + x(n+1) + n^2 - 1 = 0
    On observe une identité remarquable qu'on peut factoriser :
    (n+1)^2 + x(n+1) + (n+1)(n-1) = 0, on peut donc factoriser : (n+1)(n+1 + x + n - 1) = (n+1)(2n + x) = 0. On obtient n = -1 ou 2n = -x. Pour la deuxième solution, on peut substituer dans l'équation de départ : x^2 + (n+1)x + n^2 - 1 = (-x)^2 - n(-x) - (-x) + n^2 - 1 = 4n^2 - 2n^2 - 2n + n^2 - 1 = 3n^2 - 2n - 1. Je vous épargne les détails mais en gros, delta = 16 et n = 1 ou n = -1/3 (et je me suis planté 😭😂)

  • @trgrth
    @trgrth 3 года назад +3

    Quand j'ai vu la miniature, je me suis dit "il s'enflamme pas un peu là?"
    Edit : quand j'ai compris qu'il fallait trouver delta=0 c'était faisable
    Super cette vidéo !

  • @antoine2571
    @antoine2571 3 года назад +1

    en 1 min :) (bon pas de tête, sur paint)

  • @vipereleol6307
    @vipereleol6307 3 года назад +1

    5:00 oh un stack de delta

  • @francoisruze9443
    @francoisruze9443 2 года назад

    Salut prof
    Je suis d'accord jusqu'au discriminant qui peut s'écrire :
    (m+1)(m+1)-4(1+m)(1-m)

  • @muriellenkomaovagovolo870
    @muriellenkomaovagovolo870 Год назад

    Merci beaucoup

  • @touhami3472
    @touhami3472 3 года назад

    Une équation de 2nd : ax^2+bx+c=0, a0, admet dans R:
    • 0 solution si delta 0.
    D'ailleurs pourquoi est-il très fréquent de preciser " 2 solutions distinctes "?
    Réponse : pour ne pas confondre avec "2solutions confondues ", c'est aussi simple que ça.
    D'autre part, l'équation de la vidéo :
    x^2+(m+1)x+1-m^2 =0 (E) est une traduction de l'exercice suivant :
    Soient une parabole P: y=x^2 et une droite D:y=-(m+1)x +m^2-1 .
    Pour quelle(s) valeur(s).de m:
    1.D est une TANGENTE à P ?
    2. D est une SECANTE de P?
    Réponse :
    1. delta =0 ===> m=-1 ou m=3/5.
    m=-1===> (E) donne deux solutions x1=x2=0 confondues : cela signifie que D 'touche' P en deux points confondus(définition d'une tangente).
    Idem pour m=3/5.
    2. delta > 0 ====> m 3/5.
    m (E) 2 solutions x1,x2 distinctes : D 'traverse' P en x1 et en x2. Il s'agit bien d'une SECANTE.
    Idem pour m>3|5 .

  • @tariq7aos772
    @tariq7aos772 3 года назад +1

    Merci

  • @MrGaby46
    @MrGaby46 2 года назад

    J’adore, deltaception!

    • @hedacademy
      @hedacademy  2 года назад +1

      🤩 c’est le nom parfait pour ce calcul! Je le ressortirai 😉

    • @MrGaby46
      @MrGaby46 2 года назад

      @@hedacademy merci ta réponse et tes vidéos, t’es le seul à qui je met des likes à toutes les vidéos et commente
      Bonne continuation !

  • @gabinproisy1779
    @gabinproisy1779 3 года назад

    J'ai arrêté les cours au CAP et j'essaie de tout faire de tête donc c'était trop dur pour moi. Mais j'aime bien, j'ai jamais appris ces formules

  • @christopheSEGEAT
    @christopheSEGEAT Год назад

    Effectivement en factorisation par m+1 on trouve les 2 solutions plus rapidement

  • @theseNGLB
    @theseNGLB 3 года назад +1

    Mdr je l’ai fait en 30 secondes. En mettant (m+1) en facteur et on trouve delta= (m+1)(5m-3) et lorsqu’on pose delta=0 on trouve facilement les 2 solutions.

  • @miambotemopla
    @miambotemopla 3 года назад

    Tout est question de reformulation, le reste va de soi ( pour ceux qui maîtrisent le second degré, bien entendu !). 😜

  • @francklavis
    @francklavis 3 года назад

    pourquoi développer Delta puisqu'il est facile à factoriser : (m + 1)(4m -3)? Ce qui donne immédiatement les valeurs possibles de m, déjà reduites.

  • @mattmd59
    @mattmd59 3 года назад

    Super vidéos. Équations de plus en plus élaborées. A quand des vidéos pour les 8-10 ans ?

  • @arnaudthepgm
    @arnaudthepgm 3 года назад

    Astuce trouvée direct! (Pour une fois :))

  • @alzuaga
    @alzuaga 3 года назад

    Bonjour, personnellement, j'aurai factoriser (m+1)^2-4.(1-m^2) ) = (m+1).[(m+1)-4.((1-m)] ce qui donne directement les racines du polynôme. Tout en utilisant le identités remarquables. Cela n'étant peut-être pas le but
    de l'exercice Cordialement

  • @julieng.4375
    @julieng.4375 3 года назад

    Pas besoin de calculer delta ' , car
    -1 était une racine évidente , donc delta ' était factorisable par x+1

  • @kaderdiaw2604
    @kaderdiaw2604 3 года назад

    Ohhh les maths🥰

  • @neters6064
    @neters6064 3 года назад

    Prochaine vidéo on fait la même chose avec m et n pour partir sur des systèmes de gauss x)

  • @julieng.4375
    @julieng.4375 2 года назад

    On pouvait factoriser par (1+m) dans Delta , c'était plus simple je trouve ;)

  • @nicolasmage593
    @nicolasmage593 3 года назад

    Dommage de ne pas avoir chercher une racine évidente pour la 2ème équation pour trouver -1 comme premier m.

  • @jeanwautier8773
    @jeanwautier8773 Год назад

    Pour qu'il n'y ait qu'une solution à cette équation

  • @amdy_229
    @amdy_229 3 года назад

    Faut calculer le discriminant en fonction de m puis après poser =0 et trouver les valeurs possibles de m

  • @dastat7443
    @dastat7443 3 года назад

    C'est trop bien ! J'ai rien rien compris.

  • @justicemathstv3670
    @justicemathstv3670 3 года назад

    Je viens de commencer une chaine en anglais mais pas de subscribers. Que pu-je faire

  • @lasociotheque
    @lasociotheque 3 года назад

    C'est cool de proposer des raisonnements un peu plus poussés car on progresse en effet ;-)

  • @francoisruze9443
    @francoisruze9443 2 года назад

    Rectification ligne 2 :
    Lire :
    Delta =(m+1)(m+1-4+4m)
    Tu auras forcément détecté l'erreur de frappe 🤓😜

  • @naissshelby8885
    @naissshelby8885 Год назад

    J’comprends pas pourquoi on a pas utilisé la même méthode c’est plus simple comme ça 😭 jsp d’où ça sort mais on a utilisé x1*x2 = c/a

  • @mounouomeranhondjon5046
    @mounouomeranhondjon5046 2 года назад

    J'ai trouvé les valeurs de m sans calculer le 2e discriminant .j'ai simplement factorisé le premier discriminant.

  • @loloblaireau344
    @loloblaireau344 3 года назад

    C’était plus simple de calculer le delta en factorisant (m+1) sachant que 1-m2= (1+m)(1-m). Ça évite comme cela de calculer le delta prime

    • @jbm9122
      @jbm9122 3 года назад

      Je pense que son objectif était comment utiliser ∆

  • @AArrakis
    @AArrakis 3 года назад

    Ah bah, (1+m)2 - 4 (1-m2) = (1+m) ([1+m]-4[1-m]) = (1+m) (5m-3) = 0 => m = -1 ou m = 5/3. Même pas eu besoin de repasser par un 2e delta. Est-ce que c’est valide? Je suis passé par l’identité remarquable 1-m2

  • @julestube3799
    @julestube3799 3 года назад

    inception du delta :O

  • @nosracinesnotresang
    @nosracinesnotresang 3 года назад

    Deltaception par Christopher Hedanolan

  • @chbou77730
    @chbou77730 3 года назад

    J'ai décrocher au point d'interrogation :D

  • @vulmix7602
    @vulmix7602 3 года назад

    Juste dommage d'écrire un m comme un n. Sinon très bon problème qui permet de mettre en avant les différentes propriétés des équations du second degré. 👍

  • @chichikb
    @chichikb 3 года назад

    factoriser delta par (m+1) ca aide pas mal ....

  • @vinceguemat3751
    @vinceguemat3751 3 года назад

    et donc du coup, x+1=0 et x-3/5=0 sont les deux tangentes horizontales de x²+x(y+1)+1-y²=0
    je ne sais pas comment le démontrer...