Find the shaded area in the rectangle | Chinese Math Olympiad Geometry Problem

Поделиться
HTML-код
  • Опубликовано: 20 янв 2025

Комментарии • 23

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 16 дней назад +4

    Let E be the fourth vertex of the rectangle AEPQ according to the Pythagorean theorem AC=√85 and AB=6, and from it [AEC]=(2*9)/2=9,[ABC]=(6*7)/2=21,[AEPQ]=5*2=10, so the area of the red region is equal to 9+21-10=20

  • @michaeldoerr5810
    @michaeldoerr5810 16 дней назад +2

    The shaded area is 20 units square. I feel like an idiot for missing out on some of the HL similarity problems. I have been celebrating Christmas and New Year's. I just find it quite wonderful that HL similarity is JUST as useful as the Pythagorean Theorem. Happy New Year 2025!!!

  • @harikatragadda
    @harikatragadda 16 дней назад +2

    The diagonal AC is √85 and AB is 6. Rotate a copy of the rectangle by 180° about its center to form a red Rectangle, with a small white rectangle at its center
    with sides 1 and 2.
    Red area = 6*7 - 1*2 =40
    Half of it is 20.

    • @jimlocke9320
      @jimlocke9320 16 дней назад

      Let the copy have the same point designations but with a ' appended. To be more thorough, you need to prove that PQP'Q' is a rectangle with sides 1 and 2, and that P' lies on AQ as well as P lies on A'Q'.

    • @harikatragadda
      @harikatragadda 16 дней назад

      ​@@jimlocke9320 Another way to see it - If AC is the diagonal of a rectangle whose sides pass through AQ and PC, then a 180° rotation takes PQ to Q'P', and forms the rectangle Q'PQP', with PQ=1 and Q'P= 2.

    • @harikatragadda
      @harikatragadda 16 дней назад

      ​@@jimlocke9320Another way to see it - If AC is the diagonal of a rectangle whose sides contain AQ and PC, then a 180° rotation will take PQ to Q'P', forming a small rectangle in the middle with PQ=2 and Q'P=1.

    • @harikatragadda
      @harikatragadda 16 дней назад

      ​@@jimlocke9320Another way to see it - If AC is the diagonal of a rectangle whose sides contain AQ and PC, then a 180° rotation will take PQ to Q'P', forming a small rectangle in the middle with PQ=2 and Q'P=1.

    • @harikatragadda
      @harikatragadda 16 дней назад +1

      ​@jimlocke9320 Another way to see it - If AC is the diagonal of a rectangle whose sides contain AQ and PC, then a 180° rotation will take PQ to Q'P', forming a small rectangle in the middle with PQ=2 and Q'P=1.

  • @kateknowles8055
    @kateknowles8055 16 дней назад

    Thank you for your presentation of this problem.
    Let x = AC and y = PC
    In this question, we are given x = 5 and y = 4 but if we generalise the problem we can look at other near cases.
    If x=y=4.5 the area would be half of the rectangle and we would still need the length of AB to solve the problem
    Drawing SR parallel to PQ and forming a small rectangle, PQRS, of unit area , then:
    twice the red area (where x=5 and y=4) is equal to ABCD - 2.
    or the red area is half ABCD minus one.
    Looking at the diagonal AC of this rectangle, it will go through O, the midpoint of SR, so that AO=OC
    In triangle OAR OA is the hypotenuse. OA.OA = AR.AR + RO.RO AR = 5- 1/2 RO = 1/2 of 2
    OA.OA = ( 20 +1/4 ) + (1) = 21 +1/4
    so AC.AC = 85 this is the square of the diagonal and equals AB.AB + BC.BC using Pythagoras' theorem again.
    85 = AB.AB + 49 so AB = 6
    AB.AC-2 = 6 .7 - 2 = 40 Half of this is 20.
    The red shaded area is twenty square units.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 16 дней назад +1

    (5)^2(2)^2(4)^2={25+4+16}=45 (7)^2=49 {45+49}=94{90°A90°B+90°C+90°D}=360°ABCD/94=3 .76ABCD 3.4^19 3.4^19^1 3.4^1^1 3.2^2^1 3.1^2^1 3.2 (ABCD ➖ 3ABCD+2).

  • @marioalb9726
    @marioalb9726 16 дней назад +1

    Pytagorean theorem, twice
    b²+7²=(5+4)²+2² --> b=6cm
    Red shaded area:
    A = ½bh -½bh + ½bh
    A = ½ [ 6*7 - 5*2(5/9) + 4*2(4/9) ]
    A = 21-25/9+16/9 = 20 cm² ( Solved √ )

  • @oscarcastaneda5310
    @oscarcastaneda5310 16 дней назад

    I called angle DCP theta and this led me to 9sin(theta) + 2 cos(theta) = 7.
    This comes to sin(theta) = 3/5 and cos(theta) = 4/5 and the width of the rectangle = 6.
    Drawing the rectangle's diagonal leads to PQ being divided into the lengths (8/9) and (10/9).
    From this the desired area is A = 21 + (16/9) - (25/9) = 20.

  • @MaximPisarevski
    @MaximPisarevski 16 дней назад +3

    I always solve your problem on the preview in my head, and then check how you solved the problem. This time I thought for about 15 minutes, but did not come to a solution. I launched the video - and there, unlike the preview, the side of the square is indicated (7)! Don't do that again ))

    • @Grizzly01-vr4pn
      @Grizzly01-vr4pn 16 дней назад +4

      I've found that it's never a good idea to try and solve based on thumbnails alone.
      There's always some vital piece of information missing.
      It's always best to start the video then pause and attempt.

    • @daniellerosalie2155
      @daniellerosalie2155 13 дней назад

      I agree! ​@@Grizzly01-vr4pn

    • @JoanRosSendra
      @JoanRosSendra 11 дней назад

      Pero estoy de acuerdo que la imagen que muestra el video antes de iniciar la reproducción debería indicar tanto la medida de 7 como la condición de rectángulo. Es verdad que tampoco se dice que sea cuadrado!
      Error de interpretación, pero es un dato que se ofrece al inicio del video que no figura en pantalla de inicio.
      Saludos

  • @santiagoarosam430
    @santiagoarosam430 16 дней назад

    AC²=2²+(5+4)²=85---> AB=√(85-7²)=6 ---> AC corta a PQ en E---> Razón de semejanza entre EQA y EPC, s=5/4---> Si EQ=h---> 2-h=4h/5---> h=10/9---> EP=8/9 ---> Área ABCPQ =7*6/2 +4*8/9*2 -5*10/9*2 =20 u².
    Gracias y saludos

  • @abasaliabolhassani
    @abasaliabolhassani 15 дней назад

    So good Thanks 🎉

  • @murdock5537
    @murdock5537 16 дней назад

    ∎ABCD → AD = BC = 7; AB = CD = a → AC = √(49 + a^2)
    AQ = 5; CP = 4; sin⁡(AQP) = sin⁡(CPQ) = 1; PQ = 2 = PM + QM = (2 - k) + k
    CM = m; AM = n; MCP = MAQ = δ → tan⁡(δ) = k/5 = (2 - k)/4 → k = 10/9 → 2 - k = 8/9 →
    m = 4√85/9 → n = 5√85/9 → n + m = √85 → a = 6
    tan⁡(δ) = 2/9 → sin⁡(δ) = 2√85/85 → (1/2)sin⁡(δ)(4m - 5n) = -1 → 7a/2 - 1 = 20 = red area

  • @ДмитрийИвашкевич-я8т

    АС=√(81+4)=√85
    АВ=√(85-49)=6
    S=21+(1/2)*4*2*(4/9)-(1/2)*5*2*(5/9)=21+(16/9)-(25/9)=20

  • @vitorluis2010
    @vitorluis2010 13 дней назад

    Thumb without side with 7 unitis.

  • @appasahebkagale8278
    @appasahebkagale8278 11 дней назад

    AP problem
    a-d=0 is wrong

  • @luigiborg731
    @luigiborg731 16 дней назад

    First