an interesting integral

Поделиться
HTML-код
  • Опубликовано: 26 ноя 2024

Комментарии • 14

  • @cosmiccake791
    @cosmiccake791 Месяц назад +2

    If an apple falling on someone's head caused this insanity imagine a coconut falling😂

    • @ZazaNugget_
      @ZazaNugget_ Месяц назад

      I think I just fell out of a coconut tree
      Also I’m currently being raised in a middle class family

  • @MASHabibi-d2d
    @MASHabibi-d2d 21 день назад

    Thanks for an other video.

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 17 дней назад

    an interesting integral

  • @holyshit922
    @holyshit922 Месяц назад

    I would use by parts twice

  • @physics_rev
    @physics_rev Месяц назад +1

    the limits should have changed man, when you converted the
    (1/x^2) to - d(1/x)

    • @glady.
      @glady. Месяц назад +1

      how does that work? im a highschooler and im curious cuz we never learnt this

    • @physics_rev
      @physics_rev Месяц назад +1

      ​@@glady. whenever you want to make an integral easy, you use a substitution like
      x = f(t) some other function and dx = f'(t) and since the integral's previous limits where based on x, and you have a integral in t, you've gotta change the limits for ex: if the limits where 0 to 1 on x , and hade made a substitution: x = sin(t) then i would get the new limits of the integral to be, i) x=0; sint=0; " t=0 " ii) x=1; sint=1; " t=pi/2 "
      hence new limits 0 to pi/2
      hope you understood :)

    • @physics_rev
      @physics_rev Месяц назад +1

      ​@@glady. also, mate it's a point to be noted that the limits aregiven for an integral based on what is after the letter "d" like, if its dx then the limits are for x, and lets say if its d(x^-2) then the limits are for (x^-2)

    • @glady.
      @glady. 28 дней назад +1

      @@physics_rev got itt thanks dude!

  • @UD__07
    @UD__07 Месяц назад

    Nowadays people are playing with integrals like they know everything limits should've been changed your answer is approximated to 0.066626312481 while the actual answer to this is 0.0125665018627

    • @seegeeaye
      @seegeeaye  Месяц назад

      Unless there’s an error, my answer should be right

    • @maxvangulik1988
      @maxvangulik1988 Месяц назад

      sign error on the first term

  • @maxvangulik1988
    @maxvangulik1988 Месяц назад

    I(a)=int[1,2](x^a)dx
    I'(a)=int[1,2](x^a•ln(x))dx
    I''(a)=int[1,2](x^a•ln^2(x))dx
    I''(-2)=I
    I(a)=(2^(a+1)-1)/(a+1)
    I'(a)=2^(a+1)•ln(2)/(a+1)-(2^(a+1)-1)/(a+1)^2
    I''(a)=2^(a+1)•ln^2(2)/(a+1)-2^(a+2)•ln(2)/(a+1)^2+(2^(a+2)-2)/(a+1)^3
    I''(-2)=-ln^2(2)/2-ln(2)+1
    I=1-ln(2)-ln^2(2)/2