Seegee Aye
Seegee Aye
  • Видео 265
  • Просмотров 37 223
an interesting integral
nicely done the integral
Просмотров: 106

Видео

an interesting integral
Просмотров 45119 часов назад
the integral done by 2 methods
an interesting integral
Просмотров 14521 час назад
an integral done by 3 methods
an interesting integral
Просмотров 216День назад
an integral done by 3 methods
an interesting integral
Просмотров 117День назад
an integral done by 2 methods
an interesting integral
Просмотров 321День назад
an integral done by two methods
an interesting integral
Просмотров 10014 дней назад
a nice basic integral
an interesting integral
Просмотров 17214 дней назад
a basic nice integral
an interesting integral
Просмотров 75514 дней назад
integral done nicely
an interesting integral
Просмотров 26814 дней назад
an integral done nicely
an interesting integral
Просмотров 19714 дней назад
an integral done nicely
an interesting integral
Просмотров 33614 дней назад
an integral done nicely by two methods
an interesting integral
Просмотров 24121 день назад
a nice integral done nicely
an interesting integral
Просмотров 259Месяц назад
a good example for integration
an interesting integral
Просмотров 700Месяц назад
a good example for integration
an interesting integral
Просмотров 305Месяц назад
an interesting integral
an interesting integral
Просмотров 298Месяц назад
an interesting integral
an interesting integral
Просмотров 503Месяц назад
an interesting integral
an interesting integral
Просмотров 203Месяц назад
an interesting integral
a nice way to solve a quintic equation
Просмотров 245Месяц назад
a nice way to solve a quintic equation
an interesting integral
Просмотров 395Месяц назад
an interesting integral
an interesting integral
Просмотров 373Месяц назад
an interesting integral
an interesting integral
Просмотров 335Месяц назад
an interesting integral
an interesting integral
Просмотров 534Месяц назад
an interesting integral
an interesting integral
Просмотров 294Месяц назад
an interesting integral
an interesting integral
Просмотров 185Месяц назад
an interesting integral
an interesting integral
Просмотров 240Месяц назад
an interesting integral
an interesting integral
Просмотров 62Месяц назад
an interesting integral
an interesting integral
Просмотров 58Месяц назад
an interesting integral
an interesting integral
Просмотров 1872 месяца назад
an interesting integral

Комментарии

  • @avielabc604
    @avielabc604 День назад

    Using kings rule would solve it a lot quicker 🙌

  • @GraysThoughtSpace
    @GraysThoughtSpace День назад

    Wow I would never have thought of it this way! I split it into integrals between -π~0 and 0~π and it turns into (∫[-π, 0] (x + |x|)sinx dx + ∫[-π, 0] (x + |x|)sinx dx), and now since x in the first integral is always negative, you can write |x| as -x, and the same logic allows you to write |x| as x in the second integral. So you end up with ∫[-π, 0] (x - x)sinx dx + ∫[-π, 0] (x + x)sinx dx which is ∫[-π, 0] 0 · sinx dx + ∫[-π, 0] 2x · sinx dx = 0 + 2 · ∫[-π, 0] sin dx = 0 + 2π = 2π

  • @محمدالزيداوي-ه3ت
    @محمدالزيداوي-ه3ت 2 дня назад

    Your writing is so wonderful.❤❤❤❤❤

  • @gelbkehlchen
    @gelbkehlchen 3 дня назад

    Solution: ∫1/(5^x+1)*dx = ∫(5^x+1-5^x)/(5^x+1)*dx = ∫(5^x+1)/(5^x+1)*dx-∫5^x/(5^x+1)*dx = ∫dx-∫5^x/(5^x+1)*dx = x-∫e^[x*ln(5)]/{e^[x*ln(5)]+1}*dx = x-1/ln(5)*∫e^[x*ln(5)]/{e^[x*ln(5)]+1}*ln(5)*dx --------------------- Substitution: u = e^[x*ln(5)]+1 du = ln(5)*e^[x*ln(5)] --------------------- = x-1/ln(5)*∫1/u*du = x-1/ln(5)*ln|u|+C = x-1/ln(5)*ln|e^[x*ln(5)]+1|+C = x-1/ln(5)*ln|5^x+1|+C Checking the result by deriving: [x-1/ln(5)*ln|5^x+1|+C]’ = 1-1/ln(5)*1/(e^[x*ln(5)]+1)*e^[x*ln(5)]*ln(5) = 1-5^x/(5^x+1) = (5^x+1-5^x)/(5^x+1) = 1/(5^x+1) everything okay!

  • @dan-florinchereches4892
    @dan-florinchereches4892 4 дня назад

    I would split the fractions. First lets work on ploynomial on denominator X^4=-1 X^2=+-i X^2=i => x1=√2/2(1+i) x2=-√2/2(1+i) X^2=-i => x3=√2/2(1-i) X4=-√2/2(i-i). Now x1*x3=1/2(1+1)=1 and x1+x3=√2 X2x4=1 and x2+x4=-√2 So x^4+1=(x^2+√2x+1)(x^2-√2x+1) (Ax+B)/(X^2+√2x+1)+(Cx+D)/(X^2-√2x+1)=X^2/(x^4+1) (Ax+B)(X^2-√2x+1)+(Cx+D)(X^2+√2x+1)=X^2 X=√2/2(1+i) => (D+C*√2/2(i+1))*(i+1+i+1)=+i D(2+2i)+2√2C*i=i D=0 C=1/2√2 Similarly then A=0 B=-1/2√2 => X^2/(x^4+1)=√2/4(1/x^2-√2x+1)-1/(x^2+√2x+1))=√2/4(1/((x-√2/2)^2+(√2/2)^2)-1/((x+√2/2)^2+(√2/2)^2)) Now all that is left is using the identity Arctan'(x/a)=a/(x^2+a^2) I missed an x on nunerator so we need to first make the top similar to derivative of denominator first by afdind and subtracting a number which will resilt in logarithm antiderivative and then the arcatngent formula

  • @EpsilonDeltaProof
    @EpsilonDeltaProof 6 дней назад

    a good part of mathematic

  • @emerald_eyes
    @emerald_eyes 6 дней назад

    Just take divide numerator and denominator by 5^x. You get integral of dx/5^x(1+1/5^x) Then you set u=1/5^x, du=ln(1/5)/5^x. dx Substitute into the equation 1/ln(1/5) × integral of du/1+u. And the answer is ln(1+1/5^x)/ln(1/5)

    • @seegeeaye
      @seegeeaye 6 дней назад

      divede 5^x is to multiply 5^-x, the same

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 8 дней назад

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 8 дней назад

    14‏/11‏/2024

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 9 дней назад

    an interesting integral

  • @محمدالزيداوي-ه3ت
    @محمدالزيداوي-ه3ت 9 дней назад

    Buteful 🎉🎉🎉

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 9 дней назад

    an interesting integral

  • @MASHabibi-d2d
    @MASHabibi-d2d 10 дней назад

    Thanks, if the integral had no upper and lower limits, how would it be solved, Professor?

    • @seegeeaye
      @seegeeaye 9 дней назад

      here is to answer your question ruclips.net/video/z6W856M3Fpw/видео.html

  • @MASHabibi-d2d
    @MASHabibi-d2d 10 дней назад

    Thanks for an other video master

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 10 дней назад

    Thanks

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 10 дней назад

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 10 дней назад

    an interesting integral

  • @tgeofrey
    @tgeofrey 11 дней назад

    You amazing me with those internal half angles

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 11 дней назад

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 11 дней назад

    an interesting integral

  • @MASHabibi-d2d
    @MASHabibi-d2d 11 дней назад

    Thanks for an other video master

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 11 дней назад

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 11 дней назад

    an interesting integral

  • @maxvangulik1988
    @maxvangulik1988 12 дней назад

    I=int((xsec^2(x)+tan(x))/(1+xtan(x))^2)dx t=1+xtan(x) dt=(xsec^2(x)+tan(x))dx I=int(t^-2)dt I=-1/t+C I=-cos(x)/(cos(x)+xsin(x))+C

    • @maxvangulik1988
      @maxvangulik1988 12 дней назад

      bro changed the problem on step 3 for no reason

  • @maxvangulik1988
    @maxvangulik1988 12 дней назад

    I=int((x^-2-cos(x))/(1/x+sin(x))^2)dx t=sin(x)+1/x dt=(cos(x)-x^-2)dx I=int(-t^-2)dt I=1/t+C I=x/(1+xsin(x))+C

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 13 дней назад

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 13 дней назад

    an interesting integral

  • @Mediterranean81
    @Mediterranean81 13 дней назад

    I got e^x(1+cos x)/sin x + c

    • @seegeeaye
      @seegeeaye 13 дней назад

      @@Mediterranean81 you may verify the result by taking the derivative wrpt x to see whether it = the integrand

    • @Mediterranean81
      @Mediterranean81 13 дней назад

      @seegeeaye yeah i checked

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 13 дней назад

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 13 дней назад

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 13 дней назад

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 13 дней назад

    an interesting integral

  • @holyshit922
    @holyshit922 14 дней назад

    Integration by parts

  • @محمدالزيداوي-ه3ت
    @محمدالزيداوي-ه3ت 14 дней назад

    What is the name of the technique you used?

    • @seegeeaye
      @seegeeaye 14 дней назад

      @@محمدالزيداوي-ه3ت my own methods,substitution without U, By Parts without U and dV

  • @محمدالزيداوي-ه3ت
    @محمدالزيداوي-ه3ت 14 дней назад

    Buteful

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 14 дней назад

    an interesting integral

  • @MASHabibi-d2d
    @MASHabibi-d2d 14 дней назад

    Thanks for an other video master

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 14 дней назад

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 14 дней назад

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 15 дней назад

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 15 дней назад

    an interesting integral

  • @kevinmadden1645
    @kevinmadden1645 16 дней назад

    It might help to write the 1 in the numerator as sin squared(x/2) + cos squared(x/2). This makes the numerator a trinomial square and you get cancellation with the denominator.

  • @MASHabibi-d2d
    @MASHabibi-d2d 17 дней назад

    Thanks for an other video.

  • @MASHabibi-d2d
    @MASHabibi-d2d 17 дней назад

    That's very good master.

  • @MASHabibi-d2d
    @MASHabibi-d2d 17 дней назад

    Thanks for an other video master.

  • @maxvangulik1988
    @maxvangulik1988 18 дней назад

    (u/v)'=(u'v-uv')/v^2 v=x+e^x v'=1+e^x u'(x+e^x)-u(1+e^x)=(x-1)e^x u=-x u'=-1 I=-x/(x+e^x)+C

  • @mmmm-z3d3g
    @mmmm-z3d3g 20 дней назад

    hello sir l like your way of teaching

  • @BdEnglishTutorial
    @BdEnglishTutorial 21 день назад

    wow.

  • @BbNn9952
    @BbNn9952 Месяц назад

    From Iran Hello and Thanks

  • @holyshit922
    @holyshit922 Месяц назад

    I would use integration by parts twice