A nice mathematics algebra exponential problem | Olympiad Question| x=?

Поделиться
HTML-код
  • Опубликовано: 9 ноя 2024

Комментарии • 10

  • @AfsarSaid-f8s
    @AfsarSaid-f8s Месяц назад +1

    Zabardast

  • @AfsarSaid-f8s
    @AfsarSaid-f8s Месяц назад +1

    Good question

  • @MuhammadAwais-uf7cg
    @MuhammadAwais-uf7cg Месяц назад +1

    Nic question ❤❤❤❤

  • @HuzaifaKhan-m3i
    @HuzaifaKhan-m3i Месяц назад

    🎉🎉🎉

  • @HuzaifaKhan-m3i
    @HuzaifaKhan-m3i Месяц назад

    ❤❤❤❤❤

  • @SAIDABUBAKARSAIDABUBAKAR-m5u
    @SAIDABUBAKARSAIDABUBAKAR-m5u Месяц назад

    Wonderful 🎉

  • @guyhoghton399
    @guyhoghton399 Месяц назад +1

    _a = x/(x + 1), b = x/(x - 1)_
    ⇒ _1/a + 1/b = 2x/x = 2_
    Multiply through by _ab_ :
    _a + b = 2ab_
    ∴ _(a + b)² = a² + b² + 2ab = 12 + (a + b)_
    ⇒ _(a + b) = 4_ or _-3_
    ⇒ _2x²/(x² - 1) = 4_ or _-3_
    ⇒ *_x = ±√2_** or **_±√(3/5)_*

  • @NaeemKhan-n7j
    @NaeemKhan-n7j Месяц назад

    Good morning 🌄🌞😢😮🎉😅😊😂❤❤❤

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Месяц назад

    (x^2/{x^2+2})=+(x^2/x^2 ➖ 1) =x^2/2x^2+x^2/{x^0+x^0 ➖ }={x^2/2x^2+x^2/x^1}=x^4/2x^3 =2,x^1.1 2x^1(x ➖ 2x+1).

  • @key_board_x
    @key_board_x Месяц назад

    [x/(x + 1)]² + [x/(x - 1)]² = 12 → where: x ≠ ± 1
    [x²/(x + 1)²] + [x²/(x - 1)²] = 12
    [x².(x - 1)² + x².(x + 1)²]/[(x + 1)².(x - 1)²] = 12
    x².(x - 1)² + x².(x + 1)² = 12.(x + 1)².(x - 1)²
    x².[(x - 1)² + (x + 1)²] = 12.[(x + 1).(x - 1)]²
    x².[x² - 2x + 1 + x² + 2x + 1] = 12.(x² - 1)²
    x².(2x² + 2) = 12.(x² - 1)²
    2x².(x² + 1) = 12.(x² - 1)²
    x².(x² + 1) = 6.(x² - 1)²
    x⁴ + x² = 6.(x⁴ - 2x² + 1)
    x⁴ + x² = 6x⁴ - 12x² + 6
    5x⁴ - 13x² + 6 = 0
    x⁴ - (13/5).x² + (6/5) = 0 → is it a square ? perhaps… (a - b)² = a - 2ab + b²
    x⁴ - [2 * (13/10) * x²] + (6/5) = 0
    x⁴ - [2 * x² * (13/10)] + (13/10)² - (13/10)² + (6/5) = 0
    x⁴ - [2 * x² * (13/10)] + (13/10)² - (169/100) + (120/100) = 0
    x⁴ - [2 * x² * (13/10)] + (13/10)² - (49/100) = 0
    x⁴ - [2 * x² * (13/10)] + (13/10)² = 49/100
    [x² - (13/10)]² = (7/10)²
    x² - (13/10) = ± (7/10)
    x² = (13/10) ± (7/10)
    x² = (13 ± 7)/10
    First case: x² = (13 + 7)/10 = 2
    x² = 2
    x = ± √2
    Second case: x² = (13 - 7)/10 = 6/10 = 3/5
    x² = 3/5
    x = ± √(3/5)
    x = ± (√3)/(√5)
    x = ± (√3).(√5)/5
    x = ± (√15)/5