An Interesting Functional Equation

Поделиться
HTML-код
  • Опубликовано: 24 ноя 2024

Комментарии • 83

  • @sonicbreaker00
    @sonicbreaker00 22 дня назад +48

    If you write the first few terms like f(1), f(2), f(3), ... in terms of f(0), then you can immediately see that the general solution is:
    f(N) = N(N+1)/2 + [(-1)^N]*f(0).
    Now use f(11) = 50 to obtain f(0) = 16. Therefore, f(N) = N(N+1)/2 + [(-1)^N]*16.
    Thus, f(41) = 41*42/2 - 16 = 845.

    • @paulortega5317
      @paulortega5317 21 день назад +1

      If the domain is restricted to integers.

    • @florianbasier
      @florianbasier 21 день назад +1

      @@paulortega5317 true, but we only care about integers here

    • @Patrik6920
      @Patrik6920 18 дней назад

      Wolfram alpha has a nasty solution for this _gasping for air_
      if the unknow function f(x)+f(x-1)=x^2
      the function f(x) is
      f(x) = c (-1)^(x - 1) + 1/2 (-1)^(x - 1) ((-1)^(x + 1) x^2 + (-1)^(x + 1) x),
      havent plotted this so i dont know what the constant C are (pretty sure it can be simplified alot)
      .. it is the solution to f(x)=x^2-f(x-1), where the function is unknown
      edit: seems C is (x^2)/2 + x/2 -> C=(x^2+x)/2 = x(x+1)/2

    • @alexandreocadiz9967
      @alexandreocadiz9967 17 дней назад +4

      @@florianbasier yes but it seems that f(x) = x(x+1)/2 + 16*cos(x*pi) is a valid answer to the equation for real numbers.

    • @pavelsolaris1901
      @pavelsolaris1901 10 дней назад

      Excellent job

  • @sudiptoits
    @sudiptoits 9 дней назад +5

    Easy question
    We could do, f(x) = x^2-f(x-1)
    So f(41) = 41^2 - f(40) = 41^2-40^2 + f(39) and so on, so f(41)
    = 41^2-40^2+39^2-38^2… + 15^2-14^2+13^2-12^2+f(11)
    = (41-40)(41+40) + (39-38)(39+38) +… + (13-12)(13+12)+ f(11)
    = (81+77+73+…+25) + 50
    Using AP formulae you can calculate this to be 845

  • @spelunkerd
    @spelunkerd 21 день назад +37

    The cards referring to other videos and your channel are obstructing our view of the last page, at 8:48. It's easy to correct that in retrospect by going to RUclips studio and dragging the cards down to the bottom. You've left ample room below for those cards so it should be easy. Thanks for the video!

    • @trojanleo123
      @trojanleo123 21 день назад +1

      Agreed. Hoping the content creator heeds your advice.

    • @richardhole8429
      @richardhole8429 15 дней назад

      ​@@trojanleo123I simply touched the screen and they went away.

    • @conanthecribber
      @conanthecribber 12 дней назад +1

      @@richardhole8429 not on my PC they didn't.

  • @rickdesper
    @rickdesper 10 дней назад +2

    It's easy to do this in < 15 seconds using Excel. 😀 And spreadsheet manipulation is a useful skill to develop.
    I like solutions where it's explained why you take the steps you do, instead of just saying "look what happens if we try to make an alternating sum using pairs of consecutive values of f()". It would be useful to set up a difference equation, i.e. f(n+1) = (n+1)^2 - f(n). This would quickly and naturally lead to the kind of alternating sum you want.

  • @ZannaZabriskie
    @ZannaZabriskie 21 день назад +5

    Correct, but: DO NOT SUM the couples! If you don’t, you have:
    12+13+14+15+…+41+50
    That’s is S(41)-S(11) + 50 easy peasy!

  • @Blaqjaqshellaq
    @Blaqjaqshellaq 21 день назад +4

    Another approach you can take is to consider that f(13) - f(12)=12 + 13, and so on for these sums. So f(41) - 50=12 + 13 + 14 +... + 40 + 41. The triangular sum 1 + 2 + 3 +... +n=n*(n+1)/6, so f(41) - 50=(41*42)/2 - (11*12)/2=861 - 66=795, so f(41)=795 + 50=845.

  • @次野先生
    @次野先生 10 дней назад +2

    f(x+1)-f(x-1)=2x+1를 구하고
    x=12,14,"""40를 차례로 대입하여 변변더하면
    f(41)-f(11)=25+29+""81
    이하 우변 등차수열의 합795
    답845

  • @wannabeactuary01
    @wannabeactuary01 16 дней назад +1

    Loved this. Admittedly when you see things where you want to shout at the screen then that makes it even better.
    My moment is at 6:03. You dd all the hard work and showed:
    12^2 - 13^2 + 14^2 -15^2 +... +40^2 - 41^2
    = -(12 +13 +14 +15 +... + 40 + 41)

  • @yuvalmagen100
    @yuvalmagen100 10 дней назад +1

    beautiful

  • @boguslawszostak1784
    @boguslawszostak1784 2 дня назад

    (x) + f(x-1) = x^2
    f(x+1) + f(x) = x^2 + 2x + 1
    => f(x+1) - f(x-1) = 2x+1
    The obtained equation is a first-order linear difference equation with a step size of 2.
    Such equations are rarely encountered because they can be reduced to equations with a step size of 1 through substitution, and there is extensive literature on such equations. However, we can, inspired by this literature, apply the methods to equations with a step size of 2.
    Let's start for function: g(x) = x^2
    Calculate the difference g(x+2) - g(x):
    g(x+2) - g(x) = (x^2 + 4x + 4) - x^2 = 4x + 4
    The operation of calculating the difference is a linear operation. Therefore, the difference of (1/2)x^2 = 2x + 2
    but we need 2x + 1, so we need to find which function has a difference with a step size of 2 that is constant and equals 1.
    Let's calculate the difference with a step size of 2 for the function h(x) = x.
    h(x+2) - h(x) = (x + 2) - x
    = 2
    so x/2​ is the function we are looking for.
    So, the solution we are looking for is g(x)−h(x)=(x^2-x)/2 +C.
    It is easy to check that C is different for even and odd numbers. We simply calculate from the equation given in the problem: f(12)=122−f(11), and then calculate C for even and odd numbers.
    When we have an explicit formula for a function defined by an equation, we can determine its value simply by substituting x=51

  • @dan-florinchereches4892
    @dan-florinchereches4892 22 дня назад +3

    Well this looks hairy to start with. But if you pair up the function and say
    (1) f(x)=x^2-f(x-1) then substituting the expression for f(x-1) back
    f(x)=x^2-(x-1)^2+f(x-2)= 2n-1 + f(x-2)
    this means
    f(13)=2*13-1 +f(11)
    f(15)=2*15-1 +f(13)
    ....
    f(41)=2*41-1+f(39)
    number of terms =(41-11)/2 = 15
    adding everything up
    f(13)+f(15)+...+f(41)=f(11)+f(13)+...+f(39)+ 2*(13+15+...+41) -1*15
    reducing like terms
    f(41)=2*(13+14+15+...+40+41-14-16-18-...-40)-15=2*(1+2+3+...+41-1-2-...-12-2*(7+8+9+...+20))-15=2*(42*41/2-13*12/2-2*(1+2+...+20-1-2-...-6))-15=2*(41*21-13*6-2*(21*20/2-6*7/2))-15=2*(861-78-2*(210-21))-15=2*(783-2*189)-15=2*405-15=810-15=795
    edit : I missed the f(11)=50 from the total which should be 845. Totally forgot about that way of calculating the arithmetic series using first and last term. Makes sense to keep if on top of your mind... most exercises back in the day were mindless use of formula for sum from a0 to an

  • @mathpro926
    @mathpro926 6 дней назад

    Nice video

  • @saeedjaffer532
    @saeedjaffer532 21 день назад +2

    It is clear that the function is a polynomial f(x) =ax^2+bx+c solving for a, b, c a=b=1/2, c=0 then f(x) =1/2x^2+1/2x then f(11)=66 not 50, as given. Then f(41)=861. If f(x) +f(x-1)was=x^2-32 then f(11)=50 is correct and f(41)=845

    • @boguslawszostak1784
      @boguslawszostak1784 21 день назад +2

      But is NOT a polynomial

    • @boguslawszostak1784
      @boguslawszostak1784 2 дня назад

      The hardest person to convince that their reasoning is flawed is someone who still arrives at the correct result despite it.

  • @cutcrew2743
    @cutcrew2743 19 дней назад

    For this sequence we could set f(1) to -15. It is interesting to see that
    f(41) is nearly the same for small starting values. Here are some tuples
    of f(1), f(41) and f(1000):
    (-15, 845, 4934), (0, 860, 4949), (1, 861, 4950), (10, 870, 4959).

  • @alipourzand6499
    @alipourzand6499 21 день назад

    Lots of nice methods in this one! Hope it will make cents! ☺

  • @MrRyanroberson1
    @MrRyanroberson1 19 дней назад

    I originally came up with a solution that's only a little off the true answer, but I think my method is still a useful demonstration:
    f(x) + f(x-1) = x^2
    f(x+1) + f(x) = x^2 + 2x + 1
    => f(x+1) - f(x-1) = 2x+1
    now we offset by 1 to find f(x) = f(x-2) + 2x - 1
    f(x-2) = f(x-4) + 2(x-2) - 1
    => f(x) = f(x-4) + 4x - 6
    and repeating this strategy of expanding the function on the right side to keep doubling the gap...
    f(x) = f(x-8) + 8x - 28
    f(x) = f(x-16) + 16x - 120
    f(x) = f(x-32) + 32x - 496
    therefore, in particular, f(43) = f(11) + 32x43 - 496 = 930
    and finally f(43) = f(41) + 85; 930-85 = 845

  • @adandap
    @adandap 21 день назад

    This is equivalent to a difference equation a_(n+1) + a_n = n^2, which can be solved by multiplying by (-1)^(n+1) and summing from 11 to 41.

  • @eli37co
    @eli37co 21 день назад +1

    From the general equation you can say f(x) is ax^2+bx + c. a=0.5, b=0.5 anc c= 0. There for f(x) is 0.5x^2 + 0.5x. f(11) is 66 not 50.

    • @hasanpezuk8757
      @hasanpezuk8757 17 дней назад

      Yes question is wrong
      f(11) = 66 and (50 + 16)
      f(41) = 861 (845 + 16 )

    • @GolumTR
      @GolumTR 15 дней назад

      How do you know this is the unique function such that
      f(x) + f(x-1) =x^2
      ?

    • @rickdesper
      @rickdesper 10 дней назад

      @@hasanpezuk8757 Question is wrong?

  • @zerosir1852
    @zerosir1852 19 дней назад

    1. If f(x)=(-x²+13x+7) then find f(0), f(1), f(2), ......,f(5).
    2. If f(x)=(x²+x+11) then find f(0), f(1), f(2), ......,f(9).
    3. If f(x)=(x²+x+41) then find f(0), f(1), f(2), ......,f(39).
    You will get some clue.

  • @ConradoPeter-hl5ij
    @ConradoPeter-hl5ij 12 дней назад +1

    f(x).+ f(x-1) = x²
    and,
    f(11)=50
    f(41)= ?
    ///////////////////////////////////////////////////
    Also, there is another function who makes the same:
    g(x) + g(x-1) = x²
    => g(x) = x² - [g(x-1)]
    => g(x) = x² - [(x-1)² - g(x-2)]
    => g(x) = x² - (x-1)² + g(x-2)
    => g(x) = x² - (x-1)² + (x-2)² - g(x-3)
    => g(x) = x² - (x-1)² + (x-2)² - [(x-3)² -g(x-4)]
    => g(x) = x² - (x-1)² + (x-2)² - (x-3) +g(x-4)
    ...
    => g(x) = x² - (x-1)² + (x-2)² - f(x-3) + ... + (x-2k)² - (x-2k-1)²+...+ 3² - 2² + 1² -0²
    => g(x) = x² + (-1)¹(x-1)² + (-1)²(x-2)² + (-1)³(x-3)²+ (-1)⁴(x-4)²+...+(-1)ⁿ(x-n)²+...+ 3² -2² + 1²-0²
    _______________________
    | => g(x)= Σ (-1)ⁿ(x-n)² |
    --------------
    *obs.: x²-(x-1)² = 2x-1= x+(x-1)
    => g(x) = Σ(-1)ⁿ(x-n)² = x+(x-1)+(x-2)+(x-3)+(x-4)++...+5+4+3+2+1
    => g(x) = Σ(-1)ⁿ(x-n)² =
    = (x+1)+(x+1)+(x+1)+(x+1)+(x+1)
    \____________________________/
    (x/2) times
    => g(x) = Σ(-1)ⁿ(x-n)² = (x+1)(x/2) =Σ(n)
    this function do the same:
    ___________________
    => | g(x) = [(x+1)(x/2)] |
    ------------
    Demonstration:
    g(x) + g(x-1) = x²
    [(x+1)(x/2)]+{(x)[(x-1)/2]}=x²
    (x/2)[(x+1)+(x-1)]=x²
    (x/2)[2x]=x²
    x²=x²
    //////////////////////////////////////////////////
    Coming back to the topic question:
    f(x) + f(x-1) = x²
    and,
    f(11)=50
    f(11)+f(10)=11²
    f(10)=121-50
    f(10)=71
    and
    f(12)+f(11)=12²
    f(12)=144-50
    f(12)=94
    So, making a table base for f(x):
    x. f(x)
    0. 16
    1. -15
    2. 19
    3. -10
    4. 26
    5. -1
    6. 37
    7. 12
    8. 52
    9. 29
    10. 71
    11. 50
    12. 94
    13. 75
    14. 121
    15. 104

    • @ConradoPeter-hl5ij
      @ConradoPeter-hl5ij 12 дней назад

      Oops. I lose the anwser while trying to send the message.
      Wait, I will make that again

    • @ConradoPeter-hl5ij
      @ConradoPeter-hl5ij 12 дней назад

      let,
      l(x)= f(x) - g(x)
      f(x) + f(x-1)=x²
      g(x) + g(x-1)=x²
      =>f(x) + f(x-1) = g(x) + g(x-1)
      =>f(x) - g(x) = - [f(x-1) - g(x-1)]
      => l(x)= - l(x-1)
      this is intersting

    • @ConradoPeter-hl5ij
      @ConradoPeter-hl5ij 12 дней назад

      making a table base for g(x):
      x. g(x)
      0. 0
      1. 1
      2. 3
      3. 6
      4. 10
      5. 15
      6. 21
      7. 28
      8. 36
      9. 45
      10. 55
      11. 66
      12. 78
      13. 91
      14. 105
      15. 120

    • @ConradoPeter-hl5ij
      @ConradoPeter-hl5ij 12 дней назад

      making a table base for l(x):
      x. l(x)
      0. 16
      1. -16
      2. 16
      3. -16
      4. 16
      5. -16
      ... ...
      2k. 16
      2k+1. -16
      ... ...
      n (-1)ⁿ(16)

    • @ConradoPeter-hl5ij
      @ConradoPeter-hl5ij 12 дней назад

      Therefore,
      f(41) - g(41) = l(41)
      f(41) - {(41+1)(41/2)} = (-1)⁴¹(16)
      f(41) = (-16) + {(42)(41/2)}
      f(41) = -16 + {(21)(41)}
      f(41) = -16 + (20+1)(40+1)
      f(41) = -16 + [800+(20+40)+1]
      f(41) = -16 + [800+60+1]
      f(41) = -16 + 861
      f(41) = 845
      the anwser is f(41) = 845. 😊

  • @konstantinvorontsov9811
    @konstantinvorontsov9811 17 дней назад +1

    f(x) = x(x+1)/2 + 16(-1)^x
    is a short form for
    f(2z) = 2z^2 + z + 16
    f(2z+1) = 2z^2 + 3z - 15
    Interesting that no common formula for f(x) exists for real x, only for integer x

    • @downrightcyw
      @downrightcyw 4 дня назад

      How do you find out the general form of f(x) = x(x+1)/2 + 16(-1)^x ?

    • @boguslawszostak1784
      @boguslawszostak1784 2 дня назад

      @@downrightcyw wolfram alpha?
      But we can arrive at this ourselves.
      f(x) + f(x-1) = x^2
      f(x+1) + f(x) = x^2 + 2x + 1
      => f(x+1) - f(x-1) = 2x+1
      The obtained equation is a first-order linear difference equation with a step size of 2.
      Such equations are rarely encountered because they can be reduced to equations with a step size of 1 through substitution, and there is extensive literature on such equations. However, we can, inspired by this literature, apply the methods to equations with a step size of 2.
      The initial function: g(x) = x^2
      Calculate the difference g(x+2) - g(x):
      g(x+2) - g(x) = (x^2 + 4x + 4) - x^2 = 4x + 4
      The operation of calculating the difference is a linear operation. Therefore, the difference of (1/2)x^2 = 2x + 2
      but we need 2x + 1, so we need to find which function has a difference with a step size of 2 that is constant and equals 1.
      Let's calculate the difference with a step size of 2 for the function h(x) = x.
      h(x+2) - h(x) = (x + 2) - x
      = 2
      so x/2​ is the function we are looking for.
      So, the solution we are looking for is g(x)−h(x)=(x^2-x)/2 +C.
      It is easy to check that C is different for even and odd numbers. We simply calculate from the equation given in the problem: f(12)=122−f(11), and then calculate C for even and odd numbers.

    • @andrec.2935
      @andrec.2935 2 дня назад

      f(x) = ax^2 + bx + c ... find out a,b and c.

    • @boguslawszostak1784
      @boguslawszostak1784 21 час назад

      @@andrec.2935 You are baselessly assuming that such a,b and c exist... But they do not.

  • @alexandreocadiz9967
    @alexandreocadiz9967 18 дней назад

    This problem smells more like an arithmetic progression problem than a functional equation one. But it was fun anyway ^^

  • @timeonly1401
    @timeonly1401 4 дня назад

    Given f(x) + f(x-1) = x²
    Solving, we get f(x) = x² - f(x-1)
    Given f(11) = 50.
    Then:
    f(12) = 12² - 50
    f(13) = 13² - 12² + 50
    f(14) = 14² - 13² + 12² - 50
    ....
    f(41) = (41² - 40²) + (39² - 38²) +-... + (13² - 12²) + 50
    = 50 + Sum [from k=6 to 20] { (2k+1)² - (2k)² }
    = 50 + Sum [from k=6 to 20] { (4k² + 4k + 1) - (4k²) }
    = 50 + Sum [from k=6 to 20] { 4k + 1 }
    = 50 + 4* Sum [from k=6 to 20] { k } + Sum [from k=6 to 20] { 1 }
    = 50 + 4* Sum [from k=6 to 20] { k } + 15
    = 65 + 4* Sum [from k=6 to 20] { k }
    = 65 + 4 * ( Sum [from k=1 to 20] { k } - Sum [from k=1 to 5] { k } )
    = 65 + 4 * [ (20)(21)/2 - (5)(6)/2 ]
    = 65 + 4 * ( 210 - 15 )
    = 65 + 780
    = 845
    Done!!

  • @rushillakdawala4402
    @rushillakdawala4402 16 дней назад

    Elementary JEE level question.

  • @vafamoshtagh5130
    @vafamoshtagh5130 21 день назад +1

    Solving for f(x) + f(x-1) = x^2, I get f(x) = (x^2+x)/2, resulting in f (11) = 66 not 50. f (41) = 861 not 845. Any ideas?

    • @eoyount
      @eoyount 20 дней назад +1

      You're missing a constant term. f(x) = (x^2 + x)/2 + C. Then when you plug in x=11, you get C = -16 and everything works out.

    • @mscardholder
      @mscardholder 19 дней назад +1

      ​@@eoyountit is not constant, but alternating for even and odd. So it should be 16*(-1)^x or 16cos(pi*x)

    • @eoyount
      @eoyount 19 дней назад

      @@mscardholder You're right. I forgot it was a sum so the constants wouldn't cancel out. Need that alternating sign to get them to cancel.

  • @oscaramorim7234
    @oscaramorim7234 12 дней назад

    👍💯

  • @ChinoBlack24
    @ChinoBlack24 18 дней назад

    could someone tell whats the derivate of e^x?

  • @giuseppemalaguti435
    @giuseppemalaguti435 19 дней назад

    41^2-40^2+39^2-38^2.....+15^2-14^2+13^2-f(12)=81+77+73...+29+169-144+f(11)=81+77+73+....+25+50=845

  • @Mediterranean81
    @Mediterranean81 22 дня назад +10

    f(x) + f(x-1) = x^2
    f(x) + f(x+1) = x^2 + 2x + 1
    Subtract
    f(x+1)-f(x+1) = 2x + 1
    Divide by 2
    f’(x) = x+0.5
    f(x) = (x^2 + x)/2 + c
    f(11) = 66 + c
    50 - 66 = c
    -16 = c
    So f(x) = (x^2 + x - 32)/2
    f(41) = (41^2 + 41 - 32)/2 = 845

    • @saeedjaffer532
      @saeedjaffer532 21 день назад

      If f(x) =(x^2+x-32)/2 then f(x-1)=(x^2-x-32)/2 and f(x) +f(x-1)=x^2-32 not x^2 only. This is due to the mistake of f(11)=50 as given . It should be 66. There's no need to give it. We can assume f(x) is a polynomial of x and solving to have f(x) =(x^2+x)/2. Then f(11)=66

    • @RashmiRay-c1y
      @RashmiRay-c1y 21 день назад

      You are assuming that1/2[ f(x+1) -f(x-1)] = [f(x+1)-f(x-1)]/{(x+1)-(x-1)] = df/dx which is not necessarily true. It works out in this case.

    • @abhirupkundu2778
      @abhirupkundu2778 21 день назад

      @@RashmiRay-c1y Yea, it works only if the denominator approached zero. In this case, it was approaching two if we checked the limit, and hence, this guy's approach was mathematically wrong.

    • @boguslawszostak1784
      @boguslawszostak1784 21 день назад +1

      Subtract
      f(x+1)-f(x+1) = 2x + 1 ...really?
      f(x+1)-f(x-1) = 2x + 1
      You don’t even know if such a differentiable function exists (and actually it doesn’t), yet you’re already calculating its derivative!
      But your formula
      f(x+1)-f(x-1) = 2x + 1
      is promising; don't give up!

    • @pavelsolaris1901
      @pavelsolaris1901 10 дней назад

      This is incorrect reasoning

  • @phill3986
    @phill3986 20 дней назад

    👍👏❤️😊👏👍

  • @kateknowles8055
    @kateknowles8055 16 дней назад

    f(11) +f(10) = 121
    f(12) + f(11) = 144 f(12) - f(10) = 144-121 = 23
    f(13) + f(12) = 169 f(13) - f(11) = 169 - 144 = 25
    f (x) - f(x-2) = 2x-1 f (13) = 25 + f(11) = 25 + 50 = 75
    f(x) = 2x -1 + f (x-2) f (15) = 29 + f(13) = 29 + 75 = 104
    f(x) = 4x -6 +f(x-4) f (15) = 54 + f(11) = 54+ 50 = 104
    f(x) = nx +f(x-n) - n(n-1)/2 ls not viable f(19) = 70 + 104 =174
    by checking with n = 3 and x = 15 we have f(15) = 45 +f (12) -3 so f(12) = 104 - 42 = 62
    f(11) = 50 , this is given
    f(10) is computed from 121 and 50 . It is 71. Checking validity of a formula for even values of x, because they are haywire.
    f(12) is computed from 144 and 50. It is 94. f(12) - f(10) = 23 = 94 -71
    To be rigorous , it is safe to prove by induction what is intuitive here.
    These snail steps are safe also if double-checked. 🐌🐌🐌🐌🐌🐌 f(17) = 4x17-6 + f(13) = 62 + 75 = 137 (confessing I slipped a bit here)
    f( 14) is computed from 196- f(13) . f(14) = 196 - 75 = 121
    It is also f(14) = 56-6 + f(10) = 50 +71 = 121
    But it is f(41) which is the goal. f(41) = 41x4-6 + f(37) It is 158 + 4x37-6 + f(33). It is 8 x 39-12 +f(33)= It is 8x 41 - 28 +f(33)
    Now jumping down in eights:
    🐇🐇🐇🐇🐇🐇🐇🐇 f(33) = 33 x 8 -28 + f(25) f(25) = 25x8 -28 + f(17) = 200-28 + 137 = 309
    f(33) = 264 -28 + 314 = 236+309 = 545
    f(41) = 8x41-28 + 550 = 328-28 +545 . It is 845
    Could develop more algebra to this series, but I am going to follow this podcast now that the kangaroo is about to bound away 🦘 bye-bye

  • @cyruschang1904
    @cyruschang1904 5 дней назад

    f(x) + f(x - 1) = x^2
    f(x) = x^2 - f(x - 1)
    f(12) = 12^2 - 50
    f(13) = 13^2 - (12^2 - 50)
    f(14) = 14^2 - 13^2 + (12^2 - 50)
    f(15) = 15^2 - 14^2 + 13^2 - (12^2 - 50)
    f(41) = 41^2 - 40^2 + 39^2 ... + 13^2 - 12^2 + 50 = 81 + 77 + 73 + 69 + ... + 25 + 50 = (81 + 25)(15)/2 + 50 = 53(15) + 50 = 845

  • @zzjdkjx
    @zzjdkjx 9 дней назад

    f(x)=ax^2+bx+c
    ax^2+bx+c+a(x-1)^2+b(x-1)+c=x^2
    2ax^2+(2b-2a)x+2c-b+a=x^2
    2a=1,2b-2a=0,2c-b+a=0
    a=1/2,b=1/2,c=0
    f(x)=x^2/2+x/2
    f(41)=41X41/2+41/2=861
    f(41)=861 OK

  • @sergiykanilo9848
    @sergiykanilo9848 17 дней назад

    f(x)=x^2-f(x-1)=x^2-(x-1)^2+f(x-2) =(x+(x-1))*(x-(x-1))+f(x-2) =x + (x-1) + f(x-2)
    f(41) =41+40+39+38+...+13+12+f(11)
    =(41+12)*(41-12+1)/2+50
    =485

  • @btb2954
    @btb2954 21 день назад

    f(x)=x^2-f(x-1)
    f(12)=12^2-50
    f(13)=13^2-12^2+50 >> (13-12)(13+12)+50 >> 13+12+50
    f(15)= 15^2-14^2+13^2-12^2+50 >> (15-14)(15+14)+(13-12)(13+12)+50 >> 15+14+13+12+50
    this continues for every odd n so
    f(41) = 41+40+39...+12+50 = 41(42)/2 - 11(12)/2 + 50 = 845

  • @dominiquelarchey-wendling5829
    @dominiquelarchey-wendling5829 14 дней назад

    f(x)+f(x-1)-f(x-1)-f(x-2)=x²-(x-1)²
    f(x)-f(x-2)=2x-1
    g(x) := f(2x+1)
    g(x+1)-g(x)=4(x+1)+1
    g(x+n)-g(x)=4(n(n+1)/2+nx)+n
    f(41)-f(11)=g(20)-g(5)=g(15+5)-g(5)=4(120+75)+15=795
    f(41)=845

  • @FabienLegendre-v7u
    @FabienLegendre-v7u 19 дней назад

    f(x)=x²-f(x-1)
    f(41)=41²-f40)
    f(41)=41²-40²+f(39)
    f(41)=41²-40²+39²-38²+f(37)
    f(41)=41²-40²+.......+13²-12²+f(11)
    =(41-40)(41+40)+..+(13-12)(13+12) +f(11)
    =81+77+73+...+29+25+f(11)
    Un=U0+4n
    U0=25
    81=25+4n........n=14
    f(41)=(14+1)(81+25)/2+f(11)
    f(41)=795+f(11)=795+50=845
    Or :
    .....f(n)=(n²+n+32×(-1)^n)/2

  • @ArminVollmer
    @ArminVollmer 20 дней назад

    In Mathematica, it's a oneliner: f[x_]:=f[x]=x^2-f[x-1];f[11]=50;f[41] yields 845.

  • @mircoceccarelli6689
    @mircoceccarelli6689 22 дня назад

    f( 41 ) = 50 + S( 14 )
    S( n ) = g( 0 ) + g( 1 ) + ... + g( n )
    g( n ) = 25 + 4n , 0

  • @lifeofheaven-co4fr
    @lifeofheaven-co4fr 9 дней назад

    Omg crazy😊 🤪

  • @ConradoPeter-hl5ij
    @ConradoPeter-hl5ij 12 дней назад

    f(x) + f(x-1) = x²
    g(x) = (x+1)(x/2)
    also, g(x)+g(x-1)=x²
    then,
    f(x) + f(x-1) = g(x) - g(x-1)
    f(x) - g(x) = (-1)*[ f(x-1) - g(x-1)]
    making l(x)= f(x) - g(x)
    l(x) = (-1)*[ l(x-1) ]
    l((x) = -l(x-1)
    making f(0):
    f(0) =1² - ...(8² - {9² - [10² - (11² - 50)]})
    f(0)= 1-(4-(9-(16-(25-(36-(49-(64-(81 -(100-(121-50))))))))))
    => f(0)=16
    searching l(0):
    l(0)=f(0) - g(0)
    l(0)=16 - 0
    => l(0)=16
    then,
    l(1) = -16
    and
    l(2) = 16
    ...
    therefore,
    l(n)= (-1)ⁿ(16)
    also,
    l(n)=f(n) - g(n)
    f(n)=l(n) + g(n)
    therefore,
    ■ f(n)=[(-1)ⁿ(16)] + [(n+1)(n/2)]
    making n=41
    f(41)= -16 +[(42)(41/2)]
    f(41)= -16 +(21)(41)
    f(41)= -16 + 861
    f(41)= 845